
To the Graduate Council: 

 I am submitting herewith a thesis written by Adam Robert Miller entitled "Development 

and Verification of Parameterized Digital Signal Processing Macros for Microelectronic 

Systems." I have examined the final electronic copy of this thesis for form and content and 

recommend that it be accepted in partial fulfillment of the requirements for the degree of Master 

of Science, with a major in Electrical Engineering. 

    

D.W. Bouldin     

D.W. Bouldin, Major Professor   

 

 

 

We have read this thesis 

and recommend its acceptance: 

 

Gregory D. Peterson    

 

Chandra Tan     

Accepted for the Council:   

 

Anne Mayhew     

Vice Provost and Dean of    

Graduate Studies    

 

 

 

 
 
 
 
 

(Original signatures on file with official student records)



Development and Verification of Parameterized 
Digital Signal Processing Macros for 

Microelectronic Systems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Thesis 
Presented for the  
Master of Science  

The University of Tennessee, Knoxville 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Adam Robert Miller 
August, 2003 



Acknowledgments 

 First, I would like to thank Dr. Don Bouldin for providing me with the opportunity to do 

this research.  This research reinforced the teachings of my graduate classes, and in most cases 

went more in-depth on some of the topics and ideas.  Secondly, I would like to thank Dr. Chandra 

Tan and Mr. Fuat Karakaya for assisting me with my research.  Without Dr. Tan’s knowledge of 

the intricacies of the software tools involved, a lot of the development time would have taken 

longer, if it was able to be done at all.  Thirdly, I would like to thank the Electrical and Computer 

Engineering Department at the University of Tennessee for supporting me with a Graduate 

Teaching Assistantship until I was able to transition into this research project. 

 Most importantly, I would like to thank my wife Lara for her support.  Without her, I do 

not know if I would have gone into the Master’s Degree program in the first place.  It was with 

her support and understanding that I was able to complete this thesis. 

 This work was partially sponsored by the Defense Advanced Research Projects Agency 

and the Air Force Research Laboratory under agreement F30602-01-2-0562. 

ii 



Abstract 

 Digital system design is a broad field that is growing every day.  As technology grows, 

the complexity of systems grows also, which leads to longer design times.  A Design-for-reuse 

policy can decrease design time by building flexibility into designs as they are created.  By 

creating parameterized macros, they are more likely to be reused.  Verifying the capabilities of 

macros is also important, and testing should be incorporated into each step of the design process.  

In this thesis, designing parameterized macros is discussed, with a Complex Fast Fourier 

Transform presented as an example of a complex algorithm, and three different Rounder blocks 

as examples of simple macros.  Each Rounder was tested successfully, instantiating one of the 

Rounders with several different configurations.  The Fast Fourier Transform macro was simulated 

successfully to Post-layout Simulation for one set of parameters, and for several sets was 

simulated in the Pre-synthesis step.  The Fast Fourier Transform macro was fabricated using a 

TSMC 180nm process and verified to be working correctly. 

iii 



Table of Contents 

Chapter  Page 
1. Introduction.......................................................................................................... 1 
2. Background .......................................................................................................... 3 
 2.1  VHDL and Design Flow........................................................................... 3 
 2.2 Design-for-Reuse ...................................................................................... 5 
 2.3  DSP ........................................................................................................... 7  
  2.3.1  Overview...................................................................................... 7 
  2.3.2  The Fast Fourier Transform......................................................... 9 
  2.3.3  Rounding.................................................................................... 10 
 2.4 Verification ............................................................................................. 11 
  2.4.1  Overview.................................................................................... 11 
  2.4.2  Simulation Types ....................................................................... 12 
  2.4.3  Testing ....................................................................................... 13 
3. Implementation .................................................................................................. 16 
 3.1 Rounders ................................................................................................. 16 
  3.1.1  Fixed Rounder ........................................................................... 16 
  3.1.2 Configurable Rounder................................................................ 18 
  3.1.3 Output Gain Stage...................................................................... 19 
 3.2 FFT ......................................................................................................... 21  
  3.2.1 Shift Registers, Adders, and Subtract Modules ......................... 22 
  3.2.2 Butterfly Types .......................................................................... 22 
  3.2.3 Complex Multiplier ................................................................... 25 
  3.2.4 Twiddle Factors ......................................................................... 26 
  3.2.5 Control Logic............................................................................. 27 
  3.2.6 Structure..................................................................................... 27 
  3.2.7 Test Bench ................................................................................. 31 
4. Results ................................................................................................................. 33 
 4.1 Rounders ................................................................................................. 33 
  4.1.1 Fixed Rounder ........................................................................... 33 
  4.1.2 Configurable Rounder................................................................ 35 
  4.1.3 Output Gain Stage...................................................................... 35 
 4.2 FFT Results............................................................................................. 38 
  4.2.1 MATLAB .................................................................................. 38 
  4.2.2 Pre-synthesis and Pre-layout...................................................... 38 
  4.2.3 Layout and Post-layout .............................................................. 40 
  4.2.4 Hardware Testing....................................................................... 40 
  4.2.4 FFT Flexibility........................................................................... 44 
5. Conclusions and Future Work.......................................................................... 48 
 
List of References............................................................................................................ 49 
Appendices....................................................................................................................... 51 
Vita ................................................................................................................................. 106 

iv 



List of Figures 

Figure 2-1:  Digital Circuit Design Flow............................................................................ 4 

Figure 2-2:  Butterfly Structure......................................................................................... 10 

Figure 2-3:  BIST Structure .............................................................................................. 14 

Figure 3-1:  Fixed Rounder Algorithm ............................................................................. 17 

Figure 3-2:  Configurable Rounder Structure ................................................................... 18 

Figure 3-3:  Rounder Macro Hierarchy............................................................................. 20 

Figure 3-4:  Output Gain Stage Structure ......................................................................... 20 

Figure 3-5:  Butterfly Structures in Radix22SDF Algorithm ............................................ 23 

Figure 3-6:  Complex Multiplier Structure ....................................................................... 25 

Figure 3-7:  Top Level FFT Generation Flow ................................................................. 28 

Figure 3-8:  FFT Stage Structures..................................................................................... 29 

Figure 3-9:  Generated Structure of 64-point FFT............................................................ 30 

Figure 4-1:  Sample of Fixed Rounder Test Bench Simulation ........................................ 34 

Figure 4-2:  Sample of Configurable Rounder Test Bench Simulation ............................ 36 

Figure 4-3:  Sample of Output Gain Stage Test Bench Simulation .................................. 37 

Figure 4-4:  Pre-synthesis and Pre-layout Simulation Sample.......................................... 39 

Figure 4-5:  Layout of the 64-point FFT........................................................................... 41 

Figure 4-6:  Post-layout Simulation Sample ..................................................................... 42 

Figure 4-7:  Layout of Fabricated Chip ............................................................................ 43 

Figure 4-8:  FFT Simulations for Different N: 8, 32 ........................................................ 45 

Figure 4-9:  FFT Simulations for Different N: 64, 128 .................................................... 46 

Figure 4-10:  FFT Simulations for Different N: 256, 1024............................................... 47 

v 



Chapter 1: Introduction 

 Digital design is the process in which an algorithm is created in a digital system.  As 

technology advances to create smaller and smaller transistors, the capabilities of digital systems 

grow.  Digital systems are increasing in speed and capacity, and are decreasing in power.  This 

opens up new markets for digital systems.  For example, cellular phones with the ability to take 

pictures or record movies are a result of the digital systems in those components becoming more 

advanced. 

 As the capabilities of digital systems increase, more complex algorithms and designs can 

be created.  This increasing complexity leads to a longer design time.  Design time can be 

shortened to some extent by allocating more engineers or other resources to a project.  This can 

be costly, however.  If there is competition in a design’s target market, longer design time can 

lead to loss of sales to a competitor.  If a design is new or innovative, a shorter design time can 

lead to more sales before any competition enters the market.  Thus, increasing design time is 

proportional to increasing costs. 

 One way to reduce costs is to build on existing designs.  This can be hard to do, as the 

design might not have been initially created with the ability to build onto it in mind.  Creating 

designs so the can be reused in later projects can solve this problem.  By designing components to 

be reused, the design time decreases significantly.  Making a design more flexible is one way to 

make it reusable.  If the characteristics of an algorithm can be assigned specific parameters, it can 

be designed with the intent to make those parameters variable.  Ideally, an entire library of 

parameterized macros would be created and added to. 

 Verification is important to the design process.  Verification is a broad term describing all 

the testing that is done on a design.  By testing at different points in the design process, errors are 

caught earlier and corrected.  By catching errors earlier, costly mistakes can be avoided. 

 Digital signal processing is the study of real-world information that has been converted to 

a signal that a digital system can understand.  Signals are gathered and then converted from an 

analog source to digital.  This process is called sampling.  By sampling signals fast enough, it is 

possible to represent them in a digital system with no loss of information.  Signals that are 

sampled are in the time domain; they represent a point of data on a signal at a certain time.   

One of the fundamental operations performed in digital signal processing is to convert a 

time domain signal to a frequency domain signal.  A point in a frequency domain signal 

1 



represents the magnitude of a sine or cosine wave at that frequency.  One type of algorithm that is 

used to convert between the domains, and is optimized for use in digital systems, is called the 

Fast Fourier Transform.  This type of algorithm has many variations. 

The work for this thesis was done as part of a research project with the Defense 

Advanced Research Projects Agency (DARPA) and Boeing.  The research involved exploring 

ways to improve the power, delay, and area of application specific integrated circuits.  Several 

macros were created to test, so all the groups involved would be able to compare their 

improvement methods based on the same code.  Boeing provided the specifications for all the 

macros, and test benches for some of them, like the Rounder macros. 

The goal of this research is to design and verify a parameterized Fast Fourier Transform 

macro as an example of the process used to create and test a parameterized design.  The Fast 

Fourier Transform is used because the algorithm is moderately complex and it is used in a wide 

variety of digital signal processing applications.  Several types of Rounders are also created as 

simple examples of a parameterized design.   

By using the Fast Fourier Transform, this research will show that a complicated 

parameterized macro can be created and verified.  It will show the range of flexibility that can be 

created.  Verification will be performed in several stages of the design process.  The design will 

also be fabricated and tested, completing the last step of verification.  By creating the rounder 

macros, a simple parameterized macro is presented that is easier to understand than the Fast 

Fourier Transform macro. 

 

 

2 



Chapter 2: Background 

2.1 VHDL and Design Flow 

 VHDL is a programming language that is used to describe hardware.  It stands for 

VHSIC (Very High Speed Integrated Circuit) Hardware Description Language [1].  VHDL 

descriptions can be synthesized into field programmable gate arrays (FPGAs) and application 

specific integrated circuits (ASICs).  FPGAs are commonly designed to be reprogrammable, so 

they are often used to test algorithms.  ASICs are chips that are designed with a specific purpose 

in mind, and are generally not reprogrammable, but they are usually faster than FPGAs. 

 Figure 2-1 shows a basic flow for designing digital circuits.  First, specifications for the 

design are created by analyzing the requirements of the problem.  Then code is created to fit the 

specifications.  In this example, the code is written in VHDL and tested to see if it is functionally 

correct.  Once the code is functionally correct, it is synthesized.  Synthesis is the process of 

translating the VHDL code into gates and logical functions of a specific technology.  If the target 

technology is an FPGA, the hardware resources on the FPGA are allocated to the different logic 

functions of the code.  However, the hardware resource assignments are not specific yet.  For 

example, a hypothetical FPGA might have 2000 NAND gates available, and when a design is 

synthesized, it might require 50 NAND gates.  The synthesis tool checks to see if 50 NAND gates 

are available, and if they are, it notes that 50 NAND gates have been used, but not which 50 were 

used.  If the target technology is an ASIC, synthesis involves taking different logic functions from 

a library of standard cells.  The standard cell library is created with cells that have different logic 

functions, and sometimes variants of the same logic function that are designed to handle higher 

loads on the outputs.  The synthesis tool keeps track of which gates are used to synthesize 

different functions from the code.  The design is tested again after it has been synthesized, and if 

it is correct, a listing of the logic functions and their connections, the gate-level netlist, is passed 

to the placement and routing step. 

 After the design has been synthesized, the hardware resources from the previous step 

need to be placed, and the connections between those resources routed.  Placement and Routing, 

or PAR, involves attempting to increase the frequency the design can run at by decreasing the 

longest delay, or critical path.  Some other goals during PAR can be decreasing the total hardware 

3 



4 

VHDL Development 
Create functional VHDL code to 

Specifications 

Synthesis 
Synthesize the code into the target 

hardware 

Place and Route 
Position logic in target hardware 

and connect logic functions 

Fabrication 
Create Design in Hardware 

Problem Analysis 
Generate Specifications 

Pre-synthesis Testing 

Functional VHDL

Pre-layout Testing 

Hardware Testing 

Figure 2-1:  Digital Circuit Design Flow 

Gate Level Netlist

Post-layout Testing 

Hardware Description

Finished Design 



resources used, decreasing the power use, or some combination of the three.  After PAR is 

finished generating the layout, and the layout is verified to be correct, the design can be realized 

in hardware.  For FPGAs it is the process of configuring the FPGA with the design, which usually 

takes less than a minute.  Fabricating an ASIC involves creating the design in silicon, and can 

take two months or more from the time the design is sent to the fabrication company till the chips 

are received by the designer. 

 The most important steps in the design flow are represented by the gray arrows and boxes 

in Figure 2-1.  These highlight the testing and verification process.  Between each step in the 

design process testing should be done to determine if the design is functioning correctly, based on 

the specifications.  Testing can lead to changing the previous step or possibly going back several 

steps in the design process to correct an error that was not caught at earlier levels.  The box 

labeled “Hardware Testing” represents the final tests done on the fabricated design to verify that 

it was fabricated correctly and there are no errors in the design.  Only after the hardware is tested 

is the design process complete. 

2.2 Design-for-Reuse 

 Design-for-reuse is a method of developing algorithms so they can be reused in other 

projects.  This has the advantage of saving design time in later projects, but can cost more time in 

the initial development of the algorithm.  By saving design time, it can reduce the number of 

engineers needed per project, speed up the time to market, and reduce expenses.  One of the ways 

to design algorithms for reuse is to create code that is reconfigurable.  The term “macro” is 

sometimes applied to a block of code if it is reconfigurable. 

The more flexible the code becomes, the more likely that the code will be able to be 

reused.  However, code that is highly flexible may be more complicated for a new user.  This 

relationship leads to a balance between flexibility and ease of use.  One way to keep the code 

easy to use is to provide default settings for some of the things that can be reconfigured.  A user 

that is more familiar with the algorithm can then go in and modify these default settings for an 

application that requires it. 

In VHDL, there are two primary ways to create reconfigurable code.  The first is using 

the generic declaration [2].  Generics can be described as constants that can change with 

different instantiations of the same block of code.  In other words, generics are a way of 

specifying parameters for a given instance of a block of code.  For example, a counter could be 

5 



created using a generic that stopped at a certain value.  Each time the counter block is used, a 

different stop value can be passed to the block.  Another example is a shift register with variable 

numbers of stages.  The number of stages could be passed to the block of code, so the same block 

of code could be used any time a shift register is required.  To make it even more flexible, the 

width of the data being sent into the shift register could also be assigned as a generic.  The 

following code is the declaration of a shift register using generics.  It is designed to perform a  

 
entity shiftregN is 

 generic( data_width : integer :=25; 

n : integer :=4); 

  port( clock, resetn : in std_logic; 

  write_data : in std_logic_vector(data_width-1 downto 0); 

  read_data : out std_logic_vector(data_width-1 downto 0)); 

 

shift whenever the clock is rising and the resetn is high.  Note that the width of read_data 

and write_data is specified by the generic data_width.  Because data_width and n are 

assigned default values, it is possible to skip mapping generics to the block when it is instantiated 

in a higher-level function, and just use the default values.   

The second way to create reconfigurable code is to use the generate statement.  The 

generate statement is handled during synthesis, and can simplify the logic needed for an 

algorithm.  There are two types of generates that can be used to create flexible code.  The first is 

called a “conditional generate”.  This type of statement will allow logic to be created during 

synthesis if a certain condition exists.  For example, the following code is designed to  
 

assign_a: if a_in=1 generate 

 Y<=A; 

end generate assign_a; 

assign_b: if a_in/=1 generate 

 Y<=B; 

end generate assign_b; 

 

assign an input signal, A, to the output signal Y if a_in is equal to 1.  A second conditional 

generate is included to assign B to Y if a_in is not equal to 1.   

6 



There are many circumstances where conditional generates can be used.  For example, 

an algorithm might call for the ability to add or remove pipeline registers before synthesis, to test 

timing.  Conditional generates could be applied to this requirement so that the only difference in 

the code between the pipelined and unpipelined version is one generic assignment.  The main 

advantage to using conditional generates is that they allow for different hardware options when 

designing an algorithm.  Unused options will not be synthesized, lowering the amount of 

resources required compared to a version that includes redundant logic. 

 The second type of generate statement involves a loop.  This type of generate is useful 

when an operation needs to be repeated, either in parallel or in series.  Examples of this include 

adder trees and multipliers.  Loop generates can also be used within conditional generates, and 

the reverse works as well.  By combining them with generics, it is possible to create code that is 

flexible, and is more likely to be reused in future designs.  More examples of code with generic 

and generate statements can be found in The Designer’s Guide to VHDL, 2nd Edition [2], or 

online at “The VHDL Language Guide” [3]. 

2.3 DSP 

 In this section, an overview of Digital Signal Processing, or DSP, will be given, and 

background information on two different aspects of DSP will be presented.  The first is the Fast 

Fourier Transform, and how it works in general.  Information about the specific algorithm 

developed will be presented in the Implementation chapter.  The second aspect that will be 

presented is rounding.  This aspect is presented because the theory behind it is easy to understand, 

and it makes a good example of a simple parameterized algorithm. 

2.3.1 Overview 

 Digital Signal Processing is used in a wide variety of applications.  Some examples 

include voice recognition software, automatic target recognition for weapons, and cellular 

phones.  Any time a signal from the real world is analyzed as a digital representation of that 

signal, some form of DSP is being applied.  DSP can be performed in the time domain, taking the 

values of the signal and manipulating them, or the signal can be converted to the frequency 

domain, and processing can be done there.  Both have different advantages, and converting 

between them is usually done with a Fast Fourier Transform.  

 Digital signal processing has its roots in analog signal processing, but instead of using 

numbers to represent signal values, the actual signals are used in analog signal processing.  The 

7 



equations and filtering techniques of DSP are circuits made from resistors, capacitors, inductors, 

and operational amplifiers.  For example, band pass filters can be created using operational 

amplifiers and some resistor and capacitor networks.  In analog signal processing, this filter has a 

certain range of signal frequencies that it will allow to pass through with little to no change, and 

as the signal frequencies get farther away from the passed band, they are decreased.  A DSP 

version of the same filter is ideal.  It is possible to control the pass band, and remove any signals 

not in the pass band, instead of decreasing them gradually.  However, there are two fundamental 

problems with digital signal processing: quantization and sampling. 

 Both quantization and sampling problems are introduced when the analog signals being 

processed are converted to digital.  This conversion is referred to as analog to digital conversion, 

or ADC.  Typically, ADC is done on voltage levels, but it can be applied to other analog signals.  

During the conversion process, the strength of the input signal is compared to the maximum input 

value, and assigned a number.  For example, if you had an ADC that took an input signal from 0 

to 5 volts, with an output range of 0-255, and a 3.20-volt signal were the input, the output would 

be 163.84.  However, the output is limited to whole numbers, so it would either be 163 or 164.  

The potential for two different results is the quantization error.  A way to minimize this error is to 

increase the output range of the ADC, which is equivalent to increasing the bit-width of that 

digital signal.  Using the same example with a 12-bit ADC (output range of 0-4095) gives a result 

of 2621.44.  There is still an error, but the error is smaller by a factor of 16, because the 12-bit 

ADC can detect much smaller quantum differences in the signal than the 8-bit ADC. 

 Sampling problems are related to how fast the ADC can run.  How often the ADC 

outputs the converted signal value is called the sampling frequency.  Because the signal is not 

continuous anymore, there is a limit on the maximum frequency that can be represented by the 

digital signal.  To accurately represent the signal, there cannot be any data in the signal that is at a 

frequency higher than half the sampling frequency.  This limit is called the Nyquist frequency [4].  

Sampling at higher frequencies can solve this problem. 

 Once a signal is converted from analog to digital, there are two different domains to 

process the signal.  The first is the time domain.  Signals in this domain have different 

magnitudes at different times.  This is how we perceive all signals.  All DSP begins with signals 

in this domain, and they can be converted to the frequency domain and back again.  In the 

frequency domain, signals are represented as different magnitudes at different frequencies [5]. 

8 



There are advantages and disadvantages to processing in each domain.  One of the 

advantages of time domain processing is the ability to further sample the signal.  Windowing, or 

allowing the signal to pass for a certain amount of time, is also easy to accomplish in the time 

domain.  However, it is limited in its applications.  Many types of filters are easier to realize in 

the frequency domain.  Simple low pass filters are much less complicated in the frequency 

domain than the time domain.  Correlation is also much easier to determine in the frequency 

domain.  The key disadvantage of the frequency domain is that it deals with blocks of samples 

instead of a continuous stream of samples. 

2.3.2 The Fast Fourier Transform 

 The Fourier analysis, named after Jean Baptiste Joseph Fourier, is a process in which a 

signal is broken down to sinusoidal waves, with varying frequencies and amplitudes.  This is 

done to make it easier to perform mathematical operations on the signal.  There are two different 

traits of the signal that set how the signal will be processed.  If a signal is periodic, meaning it 

will repeat to infinity, and continuous, then the type of Fourier transform that is performed on it is 

called the Fourier series.  If the signal is not periodic, but still continuous, then the transform is 

called the Fourier Transform.  Sampled signals that are not periodic are transformed using the 

Discrete Time Fourier Transform.  Finally, signals that are sampled and periodic are processed 

using the Discrete Fourier Transform or DFT [4]. 

 The DFT can be expressed as a simple equation.  In this equation, k runs from 0 to N/2.  

This form of the DFT only shows the positive half of the frequency range, but it is commonly  

∑∑
−

=

−

=

−=
1

0

1

0
)/2sin(][)/2cos(][][

N

i

N

i
NkiixNkiixkX ππ                                (1) 

represented as the range from –N/2 to N/2.  N is the number of samples being taken.  Directly 

implementing this formula would result in an execution time that is proportional to the number of 

samples squared.  

 The Fast Fourier Transform, or FFT, is an algorithm that simplifies the DFT.  By 

processing x in a different order and breaking the operation down into the structure shown in  

Figure 2-2, it is possible to calculate the FFT with an execution time that is proportional to Nlog2 

(N).  The structure shown in Figure 2-2 is called a butterfly, and it is the basic building block of 

most FFT algorithms. 

9 



 

 Because of the way the FFT is structured, it can be used to convert from a frequency 

domain signal to a time domain signal.  This is called the Inverse Fast Fourier Transform, or 

IFFT.  To convert it, the frequency domain signal is run through the FFT algorithm.  Then, the 

samples from n=1 to n=N-1 are mirrored around (N-1)/2 [6].  The sample at n=0 is unchanged.  

By reversing most of the signal, it has converted from an FFT to an IFFT. 

2.3.3 Rounding 

 Rounding is also important to DSP.  Some operations produce outputs that are 

significantly larger than one of the inputs.  Multipliers, for example, produce an output with a bit 

width equal to the sum of the input bit widths.  Connecting several of these types of operations 

together can lead to very wide signals.  This can lead to the use of large amounts of hardware 

resources.  One way to compensate for this is to truncate the signals to a smaller size.  However, 

this reduces the accuracy of the data.  A balance between the two is to round the data off instead 

of truncating it.  Rounding in binary is much simpler than rounding in decimal.  In binary, if the 

signal is positive and the bit to the right of the rounding point is one, then it rounds up.  What 

makes this simpler in binary is the check to see if the digit above the rounding threshold is 

removed.  By adding the bit to the right of the rounding point to the bits to the left of the rounding 

point, a positive number will be rounded. 

 Sometimes a certain level of accuracy is required, and some lower bits of data cannot be 

lost.  In this case, rounding is not an option.  Instead, the higher level bits are cut off.  A 

contingency is put in so that if the signal is too large for the remaining bits to represent, it will set 

xS +

+

2-point input 2-point output 

Figure 2-2:  Butterfly Structure 

10 



the signal to the maximum value it can represent.  Combining this with a rounder leads to a very 

flexible block of code that can be used for either rounding or truncating depending on the 

situation. 

2.4 Verification 

 In this section, verification and testing will be discussed.  After presenting an overview of 

verification, different simulation types will be discussed.  Finally, testing will be discussed, with 

the focus on having test circuitry as part of a fabricated design versus having separate test 

circuitry. 

2.4.1 Overview 

 Verification is an important part of system design.  It is the process of verifying the 

functionality of the system at different stages of the design process, usually by providing some 

functional input to the design and comparing the output to the expected output.  Testing and 

verification can reduce costs in designs by reducing the chance that some or all of the design will 

not work when fabricated.  By testing at many different levels of the design process, it is easier to 

isolate where problems are introduced and correct them.  Verification should place the design 

under stress, so that it can be shown to be working for most of the combinations of parameters.  

By testing to the limits of the specifications, it is more likely that problems throughout the range 

of the specifications will be caught. 

 There are two different ways to verify that a design is working as intended.  The first is to 

create a model of the system in a higher-level language that will produce bit-true results.  This has 

the advantage of matching the output from the design exactly.  It may also be possible to create 

the model so that internal values are bit true also.  This is very helpful in debugging the design.  

However, developing a bit-true model can take a long time, depending on the algorithm and how 

it was originally created. 

 The second method of verification is to create an approximate model, or use an existing 

model that will produce similar results.  This has the advantage of being easy to develop, and can 

require less time to develop, because it is not an exact model.  In the case of DSP, there are 

existing tools that can duplicate some algorithms very easily and quickly.  The disadvantage is 

that the output from the design must be compared to the output from the model, and they might 

not exactly match.  It must then be determined, by looking at the outputs and the algorithm, if the 

design is working as intended. 

11 



2.4.2 Simulation Types 

 When performing tests on the design, there are two different options that are available at 

most stages of the design process.  The first is an event driven type of simulation.  In this type of 

simulation each operation is assumed to take a certain quantum delay, ∆.  For example, if a 

process assigned a value to a signal on the rising edge of the clock, and the clock edge occurred at 

100ns, then the output would change at 100ns plus 1∆.  This type of simulation can be fast, but it 

is not accurate for timing, only for logic.  The second type of simulation is much more 

complicated.  It can only be performed after the system has been synthesized.  It uses models of 

the gates involved and SPICE, a circuit simulation tool, to calculate what the voltages are for 

every net in the system.  This type of simulation can be more accurate, but because of the number 

of calculations involved, it usually takes more time to perform.  A SPICE simulation can take ten 

times longer or more to perform. 

 Simulation should be performed at each stage of the design process.  Doing so makes it 

easier to go back to a higher level of abstraction to correct an error.  As the design becomes less 

abstract, the simulation must become more accurate.  A purely event driven simulation would not 

be useful after the layout is generated, because it would not take into account the layout itself.  

Also, an approximation type of simulation should not be used past the Pre-synthesis testing stage.  

The results of the Pre-synthesis testing can be used to compare with the test results of the later 

stages. 

 At the Pre-synthesis stage, an event driven simulation can be useful to determine if the 

algorithm has any errors.  If the test vectors and expected output are approximate instead of bit-

true, the outputs from the design at this stage should be used in later simulations to confirm that 

they are accurate.  It should be noted, however, that because there is no timing information at this 

stage in the design process, intermediate values can be inaccurate when compared to values in 

later stages.  The stable results should be correct, however. 

 After the design has been synthesized, it is known what logic blocks will be used to 

create the algorithm.  In ASICs, these logic blocks can be standard cells.  In FPGAs, these blocks 

are usually specific to the hardware being targeted.  At this level, an event driven simulation with 

timing information can be performed.  This is similar to the previous stage, but instead of 

assuming a ∆ delay for each operation, the delay of each gate is known according to the load on 

the gate.  This timing information can be calculated based on the SPICE model of each gate and 

the load characteristics it will be under.  This produces a more accurate test.  Testing is done at 

12 



this level because it is possible to introduce timing errors when the delay for the gates has been 

introduced into the system.  For example, in a system where some combinational logic is between 

two registers, there might be too many gates between the registers, causing an error to occur.  

This level of simulation does not take into account the wire delays, because while the type of 

hardware is known, the position of the gates relative to each other is unknown.  This will 

introduce more delay, and is included in the next step.  It is also possible at this step to perform 

simulations using a fixed timing value for each gate.  By not calculating the delays of each gate, 

time is saved at the cost of accuracy of the simulation.  If the timing for the gates is estimated to 

be higher than the actual delay and there are no problems with the simulation, it is likely that the 

system is still working correctly. 

 Simulation after the layout has been generated is the most important simulation to 

perform.  At this stage, the logic required and its locations are known.  This means that the length 

of the wires and the delay that they introduce to the system is also known.  As technologies 

decrease in feature size, wire delay is becoming more of a problem.  At this level, it is still 

possible to calculate the delay of the gates and the wires connecting them, making the event 

driven simulation with delay information a good way to simulate the system.  SPICE simulation 

is possible, but it can take a long time to generate the net list, and takes a long time to run through 

each simulation.  If the delays are calculated, which is called back annotation, the input stimulus 

can be changed easily and the simulation can be run faster than a SPICE simulation.  While 

SPICE will give the most accurate results, performing an event driven simulation with timing 

information will give a good estimate for significantly less time involved. 

2.4.3 Testing 

 After creating a design in hardware, either through fabricating an ASIC or programming 

an FPGA, it is necessary to test the design to verify that it is working.  Ideally, the behavior of the 

post-layout simulation is very close to what the hardware will be, so any design problems the 

hardware would have had are already solved.  Testing can either be done with hardware in the 

chip, or by test equipment outside the chip. 

 One way to put test equipment on the chip is with a built in self-test, or BIST.  Figure 2-3 

shows an example of a BIST.  In order to use the BIST, a set of test vectors are chosen and 

programmed into the ROM.  After the test vectors are chosen, they are used with the design under 

test and the signature compressor to generate a signature.  The signature is the output of the 

signature compressor after all the test vectors have been input.  An alternative to using a ROM 

13 



 
and test vectors is to use a counter or other type of number generator.  Signature compression is 

an algorithm that retains a memory of the previous compressor outputs and performs some XOR 

operations on the previous output and the next input to the signature compressor.  Since it has 

feedback, it is only done on the rising edge of the clock.  Additional XOR gates are inserted 

between different outputs, so with no input it will output a continuous stream of numbers and will 

not repeat any until it has cycled through all the possible outputs.  This type of signature 

compressor is called a Linear Feedback Shift Register or LFSR [7]. 

 After the signature has been generated in simulation, it is programmed into the VHDL for 

the BIST.  When the BIST is run, it feeds the test vectors into the design under test and 

compresses the output in the signature compressor.  After the test vectors are finished running, it 

compares the output of the signature compressor to the simulated signature.  If they match, the 

comparator outputs a signal that acknowledges they match. 

 There are several advantages to having the testing circuitry as part of the design.  One 

advantage is that it allows the test mode to be simple, with minimal external hardware required.  

This advantage is important in a research or teaching environment, where testing equipment for 

specific hardware may be too expensive.  The second advantage is that the testing hardware runs 

at full speed.  Instead of having delay going on and off the chip and delay caused by any circuitry 

from external test equipment, there is very little delay between the testing circuitry and the design 

under test. 

 
Design Under 

Test M
U

X
 

Inputs
Outputs 

R
O

M
 

Off Chip 
Inputs 

Control Logic 
for BIST 

Signature 
Compressor

Signature C
om

pa
ra

to
r 

Match 

BIST 
Circuitry 

Figure 2-3:  BIST Structure 

14 



 There are drawbacks to this approach also.  While there is very little delay between the 

test circuitry and the design under test, the test circuitry adds some delay to the overall design.  

This slows down the overall performance of the chip.  The second disadvantage is in having extra 

circuitry on the chip.  Having the extra circuitry on the chip takes up more space and the power 

consumption increases. 

 If space, power, and speed cannot be sacrificed, another way to test a design is to put the 

test circuitry off the chip.  In addition to decreasing the space and power required for the design, 

it allows the user to create new test vectors and input them into the circuit.  Depending on the 

complexity of the testing hardware, the test board can be expensive.  Running extra test circuitry 

can slow down the design, because of the time required to get the test vectors onto the chip and 

the outputs off of the chip. 

15 



Chapter 3: Implementation 

3.1 Rounders 

There are three different rounder blocks that have been developed for this paper.  They 

are being presented as an example of parameterized code.  The lowest level is called the Fixed 

Rounder.  Additional hardware is added to the Fixed Rounder to create the Configurable 

Rounder.  The third rounder also performs some shifting on the data and is called the Output Gain 

Stage.  Code for the Rounders is included in Appendix A. 

3.1.1 Fixed Rounder 

The Fixed Rounder block is designed to take an input (d_in) of input_width bits 

wide.  It then is rounded at the radix position set by the fr_rad_pos parameter.  After 

rounding, the output is set to be the lowest output_width bits in the rounded number.  If the 

number is too large to be displayed in output_width bits, the rounder will set the value to the 

maximum.  Normally negative number can reach a value of (output_width-1)2, but the Fixed 

Rounder will limit the output magnitude to (output_width-1)2-1.  Figure 3-1 shows the logic 

for the Fixed Rounder.  The output of the Fixed Rounder is q_out. 

In addition to the flow shown in Figure 3-1, other parameters are used to specify whether 

or not there is a pipeline register on the input (ri), what kind of register is on the output (ro), 

and what type of reset the registers use (rt).  When ri is zero, there is no register on the input 

and when it is one, there is a pipeline register on the input.  The pipeline register inserts a delay of 

one clock cycle, and how it is reset is controlled by rt.  If rt is 0, there is no reset.  When rt is 

2, the reset is asynchronous.  The default value for rt is 1, and has a synchronous reset then.  For 

the output register, ro has the same behavior as ri if ro is zero or one.  It can also be set to two, 

which will insert a register that only outputs on the rising edge of the clock and when the 

out_load_enable signal is set to high.  This type of register is referred to as a “z register.”  

If ri and ro are zero, then the clock, reset_n, and out_load_enable signals are not 

needed.  

Once the fixed rounder is synthesized, all the parameter values are fixed.  For example, if 

a Fixed Rounder block had fr_rad_pos equal to 4, input_width equal to 12, and 

output_width set to 10, it would take the path shown by the dotted line in Figure 3-1.  The 

16 



Begin Fixed Rounder 
Get Parameters and Inputs 

17 

  

=0?

<0?
fr_rad_pos

Assign upper bits 
of rounded to be 
equal to d_in, 
lower |fr_rad_pos| 
bits are set to zero 

rounded= 
d_in 

>0?

Are bits that 
will be left 
all ones?

rounded= 
d_in (input_width-1 
downto fr_rad_pos) 

Yes

No

fr_rad_pos
=1?

≠1?

rounded= 
Remaining d_in bits 
+ lowest bit of d_in 

d_in negative and 
all digits from 

radix point to 0=0

rounded= 
d_in (input_width-1 
downto fr_rad_pos) 

Yes

rounded= 
Remaining d_in bits + 
radix point bit 

Rounding 
Section 

No

≤rounded width

Output_width  

>rounded width

Sign extend 
d_in to q_out 
bits wide 

Check to see if the number in 
d_in can fit in the final width.  
For positive, all bits that will be 
truncated plus msb of 
remaining must be 0.  For 
negative, all must be one and 
remaining cannot be 1 followed 
by all zeros.

Assign q_out based on previous 

check

Extending/ 
Clipping 
Section 

End Fixed Rounder 
Output is q_out 

Figure 3-1:  Fixed Rounder Algorithm 



line can take several different routes, depending on what the value of d_in is.  Logic not on the 

path shown will not be synthesized, because it is redundant.  This means that each time the Fixed 

Rounder is instantiated, it will only round a specific bit width at a specific radix point, and will 

only extend or truncate to a fixed output width. 

3.1.2 Configurable Rounder  

The Configurable Rounder expands on the Fixed Rounder.  By creating an array of input 

signals to be selected, it allows for the radix point to be adjusted dynamically.  Figure 3-2 shows 

how the array is created and how it interfaces with the Fixed Rounder block.  In the figure, rsw is 

the rounder select width (rndr_sel_width in the code), which is the bit width of the 

cr_rndr_sel input.  The width of the data input, d_in, is controlled by the parameter 

input_width.  The width of q_out is controlled by output_width.  When the Fixed 

Rounder block is instantiated, it uses an input width of input_width plus 2rsw-1, and an output 

width of output_width.  The radix position for the Fixed Rounder is controlled by 

fr_rad_pos in the Configurable Rounder. 

The main purpose of the Configurable Rounder is to take signals and round them at 

different radix points.  This is accomplished by using the sign extension operations and padding 

least significant bits (lsbs) with zeros to shift the desired radix point to the radix point to which 

the fixed rounder is set.  For example, if the fixed rounder was set to round on the fourth bit, and 

d_in needs to be rounded on the third bit, it can be padded by one zero on the lsb, and sign 

extended so the width will be the width of the fixed rounder input.  The third bit has been shifted 

 

Add lsbs: 2rsw-1 

Add lsbs: 2rsw-2 

Add lsbs: 1 

Sign Extend 1 bit 

Sign Extend 2rsw-2 

Sign Extend 2rsw-1 

 
11..11

11..10

Fixed 
Rounder 

.......

.......

.......

00..00

00..01

q_out

d in 

cr rndr sel 

Figure 3-2:  Configurable Rounder Structure 

18 



to the fourth bit position, so the fixed rounder will round on the correct bit.  Another use for the 

configurable rounder is to shift signals down to the same magnitude.  If a series of inputs is 

known to have different radix points, and the numbers are going to be added together, then they 

need to be shifted so they all have the same radix point before they are added together.  By using 

the Configurable Rounder, it is possible to select the correct amount of shifting to move the radix 

point to the desired location.  Rounding can be done on the information to decrease the size of the 

operations that will follow the Configurable Rounder.  This algorithm can have problems with 

making some parameters too large.  As the rsw parameter increases, the number of inputs to the 

multiplexer grows proportional to the square of rsw. 

As with the Fixed Rounder, the Configurable Rounder also has ri, ro, and rt as 

parameters.  In addition to parameters setting the input and output register types and reset type, 

there is a parameter to set a register on the cr_rndr_sel input.  This parameter is called rc, 

and it has values associated with it similar to ri (0 is no register, 1 is a pipeline register).  The ri 

parameter on the Fixed Rounder is set to 0, and the ro parameter is mapped to the ro parameter 

of the Configurable Rounder.  It should be noted that there are no generate statements in the 

Configurable Rounder that are based on ro, the Fixed Rounder handles ro exclusively.   

3.1.3 Output Gain Stage 

This block is the final type of rounder block.  It is the highest block in the rounder 

hierarchy, as show in Figure 3-3.    Also shown are two other blocks of code, plr.vhd and  

zreg.vhd.  These blocks are the pipeline register and z register, and have their input width and 

reset type parameterized.  This allows them to be used in a variety of situations.  

The Output Gain Stage is designed to take an input vector (d_in), run it through a 

Configurable Rounder to make the vector smaller, and then multiply it by another input, gain.  

The output of the multiplier is sent into a Fixed Rounder block so the next block in the DSP 

algorithm can be loaded with the right number of bits. Figure 3-4 shows the overall layout of the 

Output Gain Stage.  The goal of the Output Gain Stage is to scale an input signal to a range and 

overall width that will produce useful results in the next processing stage.  The Configurable 

Rounder in this design rounds d_in to a smaller value, which makes the multiplier smaller.  

When the output from the configurable rounder is multiplied by gain, the answer has a width 

equal to the gain_width plus the cr_output_width of the Configurable Rounder.  

19 



 

 

 

  
 

 

 

 

 

 

Configurable 
Rounder 

Fixed 
 d in q_out Rounder

gain 

cr rndr sel 

Figure 3-4:  Output Gain Stage Structure 

Output Gain Stage 
output_gain_stage.vhd

Configurable Rounder
config_rndr.vhd 

Fixed Rounder 
fixed_rndr.vhd 

plr.vhd zreg.vhd

Figure 3-3:  Rounder Macro Hierarchy 

20 



By setting the ri parameter to one in the instantiation of the Output Gain Stage, a 

pipeline register is inserted on the input.  The input register is handled by the Configurable 

Rounder block.  In the Configurable Rounder block, ro is set to zero, which means there is no  

output register in that block.  The rc parameter of the Configurable Rounder is inherited from the 

Output Gain Stage.  If rc is set to one in the Output Gain Stage, a pipeline register is inserted to 

delay the value of gain.  Because the Configurable Rounder inherits rc, if there is a register on 

gain, there will be a register on the cr_rndr_sel input.  Additionally, the cr_rad_pos, 

rndr_sel_width, and output width are all set when the Output Gain Stage is instantiated. 

An additional register is inserted into the data flow if the parameter pr is one.  This 

register is for pipelining the algorithm.  When the register is enabled, it is inserted between the 

Configurable Rounder and the multiplier.  No register is inserted between the gain and multiplier.  

Because of the mismatch in delays, designs using the Output Gain Stage need to take the 

difference in levels of delay.  Another solution to this problem is to not include an extra register 

on the output for simulation before synthesis, and use a synthesis tool that can allocate pipeline 

registers into a design automatically. 

As in the Configurable Rounder, the Fixed Rounder handles the ro parameter of the 

Output Gain Stage.  The ri parameter of the Fixed Rounder is set to zero, the input width is set  

to the output width of the multiplier, and the output width is set to the output width of the Output 

Gain Stage.  The radix position is set when the Output Gain Stage is instantiated. 

3.2 FFT 

The FFT macro that has been created is using an algorithm called the Radix-22 Single 

Path Delay Feedback (R22SDF) algorithm [8].  This algorithm takes a natural order stream of 

complex number inputs, one per clock cycle, and outputs a stream of complex numbers in bit-

reversed order.  Bit-reversed order means that if a counter counted each point of data that was 

coming out, and reversed the order of the bits in the counter, that would be the sample number 

corresponding to that point of data.  For an N point FFT, there are N-1 registers used in feedback 

shift registers, 2 log2 (N) complex adders, and (log2 (N) -1)/2 complex multipliers, with any 

fractions dropped.  Log2 (N) is the number of butterfly stages that will be in the design, and are 

numbered from one to log2 (N).  First the components will be described from the lowest level up 

to the higher levels, then information about the test bench and how the test vectors are created 

21 



will be presented.  Code for the FFT is in Appendix B.  There are also some commercially 

available FFT cores.  For example, Xilinx has one available in their IP Center [9]. 

3.2.1 Shift Registers, Adders, and Subtract Modules 

 Shift registers are used in this algorithm to provide feedback.  Two different modules 

have been created to fill this role.  The first is shiftreg1, which is a 1-stage shift register with the 

input width set by data_width.  The second is shiftregN, which is an N-stage shift register 

with input width set by data_width as well.  In the first stage of the FFT, the shift register is 

set to N/2 stages.  Each FFT stage after divides the number of shift register stages by 2, until 

shiftreg1 is used in the last FFT stage. 

 Adder and subtract macros are included to reduce the amount of recoding necessary to 

replace add and subtract operations.  It is possible to map operators to macros to different 

operations.  For example, it is possible to map the “+” operator to a macro that adds the two 

numbers together and returns the sum.  If the “+” operator is not mapped to a macro, the adder 

macro used could be replaced with an adder of a different design.  The same applies to normal 

multiplication and subtraction. 

3.2.2 Butterfly Types 

There are two different butterfly structures used in this FFT algorithm.  The two types of 

butterflies are shown in Figure 3-5.  The names in parenthesis are the names of the signals in the 

code.  The last letter is to signify if it is the imaginary component of a signal or the real 

component of a signal.  As an example, xfr and xfi are the imaginary and real parts of the 

complex signal xf.   

Both butterflies share a control signal s, which controls four multiplexers.  The signal s 

is driven by a bit in the control counter.  The counter has a range of zero to N-1.  Each stage is 

driven by a different bit, with the first stage driven by the log2 (N) bit of the counter, and the last 

stage by the lowest bit of the counter.  This signal switches the butterfly between two different 

modes.  When s is zero, the butterfly is in passing mode.  When in passing mode, xf and xp are 

passed to Zn and Zf, respectively.  When s is one, the butterfly is in butterfly mode.  In this 

mode, the butterfly operation is performed and the answers sent to the output signals.  The BF2I 

butterfly is used for the odd numbered stages, including the first stage, and the BF2II butterfly is 

used in the even numbered stages. 

22 



  

xfr Zfr 
(fromreg_r) (toreg_r) 

xfi Zfi 
(fromreg_i) (toreg_i) 

xpr Znr 
-(prvs_r) (tonext_r) 

xpr Zni 
-(prvs_i) (tonext_i) 

s 

(i) Butterfly Type BF2I 

Zfr xfr 
(toreg_r) (fromreg_r) 

Zfi xfi 

Figure 3-5:  Butterfly Structures in Radix22SDF Algorithm 

|+

-

_    

(toreg_i) (fromreg_i) 

|+
 

Znr xpr 

t   s 

(tonext_r) (prvs_r) 

Zni 
(tonext_i) 

xpi 
(prvs_i) 

(ii) Butterfly Type BF2II 

23 



The control signal t is used in BF2II to add some extra functionality to the butterfly.  

When t is zero and s is one, the data in the butterfly is routed differently, and some of the 

addition and subtraction operations are performed differently.  First, the real and imaginary parts 

of xp are switched.  This causes the first and third operations to change from xfr + xpr to xfr 

+ xpi and xfr - xpr to xfr - xpi.  The second and fourth operations also change.  The second 

changes from xfi + xpi to xfi - xpr, and the fourth changes from xfi - xpi to xfi + xpr.  

The code for this is implemented slightly differently.  The components of xp are still switched, 

but instead of changing the type of the second and fourth operation, the outputs are switched.  

This data manipulation in the BF2II stage is for one purpose.  The entire operation mimics 

multiplying the xp input by –j.  Performing the operation this way saves space, because a 

complex multiplier is unnecessary.  This multiplication is needed for the algorithm to function 

correctly, and is done to simplify some of the twiddle factor multiplication.  The control signal t 

is equal to the s bit of the previous stage. 

Both butterflies have two parameters, the output_width and add_g parameters.  

The add_g parameter is the adder growth, and can be either zero or one.  Whenever binary 

numbers are added, the output width grows to be one bit bigger than the input width.  The add_g 

parameter regulates if the extra bit is added onto the signal, or if the signal will remain the same 

size.  For example, if the output width is 12 and add_g is set to one, the input width will be 11.  

The signal xp is the only input signal set by input_width, all the rest are set by 

output_width.  The signal xf is set by output width because it is input from the feedback 

shift register.  The shift register has Zf as the input, so the width of xf and Zf must match. 

Suppose an instantiation of BF2I has an output_width of 13 and an add_g of 1.  In 

order for the adders to function properly in this version, they must have the same width input and 

output.  The signal xp must be sign extended to match the width of xf.  The sum of the different 

components will then be 14 bits.  A special multiplexer, mux2mmw, is inserted to handle the 

signals with mismatched width.  The output from this multiplexer is 13 bits wide.   

The highest bit in the adder can be truncated because of how the butterfly and shift 

register work together.  The butterfly in each stage is controlled by a bit in a counter.  The 

controlling counter will be discussed more in a later section.  Because it is a counter, the s signal 

will only be high for a number of clock cycles equal to the depth of the shift register for that 

stage.  For example, the first stage in a 64-point FFT has a shift register that is 32 stages deep.  

24 



For the first 32 clock cycles, the butterfly is in passing mode, and is filling up the shift register 

with the 12-bit inputs.  For the next 32 clock cycles, the butterfly is active, and the shift register 

will be filling inputting the 13-bit results of the butterfly operations, and will be outputting the 

stored 12-bit values.  For the next 32 clock cycles, s is low again, so the shift register will be 

outputting the stored 13-bit values, and storing new 12-bit values.  The process then repeats itself.  

Never is a 13-bit number added to a 12-bit number, only 12-but numbers are added to 12 bit 

numbers.  The same is true of the BF2II stage. 

3.2.3 Complex Multiplier 

At each even-numbered stage, except the last if it is even, the Zn complex signal from the 

BF2II butterfly is multiplied by a complex twiddle factor.  Figure 3-6 shows the structure of the 

complex multiplier.  The input width of the two inputs can be different.  The addition and  

subtraction operations are performed on signals of the same width, since every input to those 

operations comes from the product of one part from each signal.  This means that real and 

imaginary parts of each signal must be the same width.   

The multiplier growth parameter (mult_g) is used to limit the output of the multiplier.  

In this design, each instantiation of the complex multiplier is multiplying by the same width 

signal for the second input, called twiddle factor width.  The first input is the output from the 

BF2II stage, and the second is the twiddle factor, from the ROM storing the twiddle factors.  The 

output from the multiplier is equal to the output width of the BF2II output plus the parameter for 

 

Re1 

Im1 Re 
-

Re2 Im 

Im2 

Figure 3-6:  Complex Multiplier Structure 

25 



the twiddle factor width, twiddle_width, plus one.  The additional one comes from growth 

during the addition and subtraction operations.  In the complex multiplier, add_g is part of 

mult_g.  The output from the complex multiplier is truncated to be equal to the first input’s 

width plus the mult_g parameter.  This limits the mult_g parameter to a range from zero to the 

twiddle_width plus one.  

3.2.4 Twiddle Factors 

In the R22SDF algorithm, every even stage has a complex multiply by a complex twiddle 

factor.  In this version of the algorithm, the twiddle factors are generated ahead of time in 

MATLAB and written to a VHDL file that contains a case structure.  The case structure it 

generates is similar to a ROM, and a ROM could be substituted for it easily.  It will be referred to 

as the twiddle factor ROM or just ROM.  The MATLAB code to generate the ROMs is in 

Appendix C, as is all the other MATLAB code. 

The following equation is used to generate the twiddle factors.  In this equation, N is the 
))/(2()( Nkxj

i exW π−=                                                         (2) 

 total number of points in the FFT, and x ranges from zero to the number of points in the ROM 

divided by 4.  The number of points in the ROM, m is equal to the number of shift registers in 

this stage multiplied by four.  The variable k changes as a function of the number of points.  For 

the first m/4 points, k is equal to 2*N/m.  For the second m/4 points, k is equal to N/m.  For the 

third, k is equal to 3*N/m.  For the last m/4 points, k is equal to zero.  The result of taking the e0 is 

one for the real part and zero for the imaginary part, so the last m/4 points are one for the real 

parts and zero for the imaginary. 

 The width of the twiddle factor is controlled by the twiddle_width parameter.  

When MATLAB generates the twiddle factors, it is initially not in a fixed-point format.  To scale 

them, they are multiplied by 2twiddle_width-1.  Any fractions are dropped, and then they are 

converted to two’s compliment form.  This is done separately on the real and imaginary parts of 

the twiddle factors. 

 To make the process of generating the ROMs easier, a different MATLAB program is 

designed to repeatedly call the ROM generator program.  It generates all the ROMs needed for a 

specific twiddle_width and number of points. 

26 



3.2.5 Control Logic 

The control logic for the FFT is simple.  A counter is used to switch the butterflies 

between modes and pick the twiddle factors from the ROMs they are stored in.  The counter is 

log2 (N)-bits wide.  In addition to the clock and reset signals, it uses a load_enable signal 

to start.  In addition to controlling when the counter starts, it controls how long the FFT runs.  The 

counter is designed to continue counting if the load enable is set to low and the load enable signal 

was high for at least N clock cycles.  This allows the FFT to keep outputting data for which it has 

the entire waveform.  If the load enable is set to low after less than N clock cycles, there will be 

an error and the FFT will need to be reset. 

The FFT takes in a stream of complex numbers.  The first clock cycle when the load 

enable is high is when the first data point is read.  On the N-1 clock cycle, the counter is equal to 

its maximum value, and the output from the FFT is dependent on the input.  It takes the output on 

that clock cycle longer to stabilize than any other clock cycle. 

3.2.6 Structure 

The structure of the FFT is built based on the parameters.  The number of points (N) sets 

how many stages the system will have (num_stages) to log2 (N).  The bit width of the input is 

controlled by the input_width, and how many bits wide the output signal will be is set by the 

number of stages, the multiplier growth, and the adder growth.  Figure 3-7 shows a flowchart of 

how the structure is generated.   

After initializing a counter to one, a generate loop runs from i=1 until i=num_stages.  

During each iteration of the loop, several conditional generates assign the correct butterfly for 

that stage and connect the inputs and outputs of the butterfly to the correct signals.  The first stage 

has its inputs connected to the input signal of the FFT.  When each stage is generated, it has an 

input width equal to the following equation.  The division of i minus one by two, when  

)2/)1((*_*___ −++= igmultigaddwidthinputwidthstage                   (3) 

performed in VHDL, does not return the fractional part of the answer.  The equation generates the 

bit width of the output of the butterfly in each stage.  Subtracting add_g from the equation gives 

the input width.  In the BF2I butterfly, the stage_width is equal to the output width.  In the 

BF2II butterfly, the output width is equal to stage_width plus the multiplier growth 

parameter. 

27 



   
In order to hold the interconnections, an array of signals is created.  The width of the 

signals ber 

 

output of the FFT macro.  If the last 

stage is 

ure 

it 

 Figure 3-8 are actually two shift registers in parallel.  One is for the 

real par

the 

in the array is set by the equation above, substituting num_stages in for i.  The num

of signals in the array is equal to num_stages minus one.  Only the parts of the signal that are 

used will be synthesized.  For example, if the output width of a stage is 13 bits and the output bit-

width is 36 bits, 23 bits of the array entry that correspond to that stage output are not connected to

any signals.  Since those signals are not connected to anything, they will not be synthesized.  In 

Pre-synthesis simulation they can still be seen, however   

The output from the last stage is connected to the 

an odd-numbered stage, then the BF2I butterfly is used.  If the last stage is an even- 

numbered stage, the BF2II butterfly is used, but there is no twiddle factor multiplication.  Fig

3-8 shows what the structure of each stage looks like.  Except for the control signals (clock, 

reset, address, t, and s), all the signals in the stages are complex.  The gray box labeled 

“Last Stage” in Figure 3-8(ii) shows which components of stage_II are used in the last stage if 

is an even-numbered stage. 

The shift registers in

t of the signal; the other is for the imaginary part.  The width of each shift register is 

stage_width bits, and the depth is 2num_stages-i.  So for the first stage of a 64-point FFT, 

shift register is 32 stages deep.  The address line controlling the twiddle factor ROM is 

Initialize 
counter (i) 
to one. 

i 
=1

Even, ≠num_stages 

Odd, ≠num_stages 

Even, =num_stages 

Odd, =num_stages 

Generate First Stage, BF2I 

Generate i Stage, BF2I 

Generate i Stage, BF2II 
Connect correct ROM 

i=i+1 

Generate last Stage, BF2II 
No ROM used 

Generate last Stage, BF2I 

Figure 3-7:  Top Level FFT Generation Flow 

Done

28 



 
num_stages minus i plus two bits wide.  The address line width is equivalent to taking the 

counter output from the bit tied to t down to zero.  So, for the fourth stage in a 64-point FFT, the 

twiddle factor ROM has 16 entries and the address signal is connected to the lower four bits of 

the counter (from the t bit down to the lowest bit).  The Twiddle Multiply block is a wrapper f

the complex multiplier.  It contains the complex multiplier and truncates the output of the 

multiplier to a width equal to the width of the butterfly output plus the multiplier growth. 

Figure 3-9 is an example of a 64-point FFT.  The input width is set to 12 bits, the t

or 

widdle 

width is

f the 

s 

labeled. the 

r 

t 

 set to 10, the multiplier growth is set to 9, and the adder growth is set to 1.  As with 

Figure 3-8, all the signals in Figure 3-9 are complex except the control signals.  The widths o

signals are labeled, and the widths are for each part of the signal (real and imaginary).   

Rather than clutter the figure with the control lines, the output from the counter i

  The most significant bit in the counter is labeled c5, and the number decreases to 

least significant bit, c0.  The control signal s for the first butterfly is tied to c5.  The formula fo

determining which control bit a stage uses is num_stages-i.  The address line of the twiddle 

factor ROM for the second stage is labeled [c5..c0].  This notation means the most significan

bit in the address is tied to the highest bit in the counter, and second most significant bit is tied to 

the second highest bit, and so on down to the least significant bits of each signal being connected. 

BF2I 

Shift 
Register 

s 

clock  reset 

prvs to_next 

 

) BF2I stage: stage_I (i

BF2II 

Shift 
Register 

t      s

clock  reset

prvs to_next 

i) BF2II stage: stage_II 

 

(i

Twiddle 
ROM 

Twiddle 
Multiply 

address 

Figure 3-8:  FFT Stage Structures 

Last 
Stage 

29 



[c5..c0]
Shift 

Register 
Shift 

Register 
Twiddle 

 
Figure 3-9:  Generated Structure of 64-point FFT 

BF2I 

 
32 stages 

xin 

1313 

12 13

BF2II 

 
16 stages

14 14

ROM 
 

64 entries 

10

c5 

Twiddle 
  Multiply 

         s 14t        s 

c5     c4

[c3..c0]
Shift 

Register 
Shift 

Register 
Twiddle 

BF2I 

Shift 
Register 

 
2 stages 

3535 

34 35

BF2II 

Shift 
Register 

 
1 stage 

36 36

c1 

36

 

t        s 

 

         s 

c1     c0

BF2I 

 
8 stages 

2424 

23 24

BF2II 

 
4 stages 

25 25

ROM 
 

16 entries 

10

c3 

Twiddle 
  Multiply 

         s 25t        s 

c3     c2

clock
reset

c5 
c4 

C
ou

nt
er

 

c3 
c2 
c1 
c0 

Xout load enable 

30 



As was mentioned earlier, on the clock cycle when the last point of data is on the input 

has the longest delay.  On that clock cycle, all the butterflies are in active mode and the complex 

multipliers are operating along the path.  By tracing the data path through Figure 3-8, the amount 

and type of operations can be seen.  The data must travel through six addition or subtraction 

operations and two complex multiply operations.  As the number of points grows, the number of 

multipliers and additions/subtractions increases, which increases the delay.  For a 1024-point 

FFT, the data will travel through ten addition/subtraction operations and four complex multiply 

operations.  Increasing the bit-width of the input or the twiddle factor will also increase the delay, 

because the arithmetic operations take longer to reach an answer for larger inputs.  Controlling 

the growth of the signal is the purpose of the mult_g parameter.  By decreasing the mult_g 

parameter, the growth of the signals will be smaller, which will translate to less delay.  However, 

truncating the output of the multiplier will decrease the accuracy of the results. 

The VHDL files included are configured to match the parameters in this example.  The 

hierarchy for the VHDL macros is functionally equivalent to what is presented here.  The 

generate loop shown in Figure 3-7 is in the top-level module fft_core.vhd.  This loop 

connects the different types of stages (stage_I.vhd, stage_II.vhd, 

stage_I_last.vhd, and stage_II_last.vhd) together.  The only difference between 

stage_I.vhd and stage_I_last.vhd is that stage_I.vhd uses shiftregN.vhd to 

instantiate the shift registers, and stage_I_last.vhd uses shiftreg1.vhd for its 1-stage 

shift registers.  The even-numbered stages that are not the last stage are implemented using 

stage_II.vhd.  This module contains the BF2II butterfly (BF2II.vhd), two copies of the 

shiftregN macro, and the twiddle multiplier (twiddle_mult.vhd).  It has inputs that are 

wired to the twiddle factor ROM for that stage.  The ROMs are numbered from largest to 

smallest, so the first ROM in the data path is always rom1.vhd.  The other type of stage II 

module, stage_II_last.vhd, is identical to the stage_II.vhd module, except that it 

does not include the complex multiplier or the inputs from the ROM. 

3.2.7 Test Bench 

The test bench for the FFT is written in VHDL, but it loads test vectors that are created in 

MATLAB.  The vectors control the FFT and send three input waveforms into it.  The second 

vector is repeated as the third, and the only purpose for it is to enable the test bench to keep 

writing the output of the second waveform until it finishes.  After the clock is started, the test 

31 



bench writes the output of the FFT to a file.  By default, it reads from a file called “testvec” and 

writes to a file called “data.out”. 

The test vectors generated are a concatenation of the reset, load_enable, xin_r 

(the real part of the input), and xin_i (the imaginary part of the input).  In the files the bits of 

the signals are ASCII characters, not stored binary numbers.  This makes it easy for a user to 

examine the files and verify that they have been generated correctly.  By putting the reset and 

load_enable into the test vectors, the only signal that needs to be set in the test bench is the 

clock.  However, having the reset operating at almost the same time as the clock can cause 

problems in simulations after synthesis.  In this case, it is better to force the reset signal high 

during the clock cycle before the reset would be set high by the test bench. 

The advantage of writing the vectors in MATLAB is that creating an approximate model 

of the FFT is easy.  After the test bench has been simulated, a second MATLAB file, 

plotdata.m, can read the original test vectors, convert them to floating point numbers, 

perform MATLAB’s built in FFT function on them, and finally plot them and the results of the 

FFT simulation.  This allows for easy visual comparison of the outputs.  It can be modified to 

display data in different ways (real and imaginary or magnitude and phase), depending on what 

test vectors are input.  If the Pre-synthesis results are correct, a new test bench can be created to 

read the Pre-synthesis results and compare them to the FFT being simulated. 

In addition to a MATLAB test bench, a BIST module for the 64-point FFT has been 

created.  This module operates as was described in section 2.4.3.  The purpose of this module is to 

serve as an inexpensive alternative to external testing hardware.  It is not reconfigurable at this 

time, but the components except for the ROM are. 

32 



Chapter 4: Results 

4.1 Rounders 

The test bench for each rounder module instantiates the macro under test, sets up an 

internal clock, and then inputs the test vectors into the macro.  Each macro had over 1000 test 

vectors.  The q_out signal is compared to the expected_q_out signal each clock cycle, and 

if they were not equal, an error is reported.  The parameters in each simulation are displayed as 

integers, the control signals (if any) as binary numbers, and the data signals as hexadecimal 

numbers.  When referring to binary numbers, 0b will be before the number.  Hexadecimal 

numbers in text will have 0x in front of them.  Due to the length of the rounder test benches, they 

are not included in the Appendices. 

4.1.1 Fixed Rounder 

Figure 4-1 shows a sample of the Fixed Rounder simulation.  The figure shows five test 

vector inputs and outputs.  This is a Pre-synthesis simulation, so the outputs appear to be 

changing at the same time as the input.  This is an effect of using a ∆ delay in an event driven 

simulation.  In this simulation, there are no input or output registers (ri and ro are equal to 

zero); the input d_in is a 23-bit wide signal.  The rounding is set to be on the 10th bit, and the 

final output width is set to 12 bits.  This means the output from the rounding section (rounded) 

will be clipped down to 12 bits from 13. 

The last input shown, 0x5652C7, is an example of a negative number that is too large to 

fit in a 12-bit number, so the output is set to the maximum 12-bit signed number, 0x801.  The 

second and fourth test vectors are both positive numbers that are too bit to fit in a 12-bit number, 

so the output is set to 0x7FF, the maximum positive output.  The 10th bit of the first test vector is 

one, so that test vector shows a successful positive round.  The 10th bit of the third test vector is a 

zero, so that vector shows a case where a positive number is not rounded. 

Initially, one test case was missed in the test vectors.  In the clipping section, it was 

possible for a negative number to be set to outside the intended range of outputs.  For example, if 

the input was 0b111000, the rounding position was set to zero, and the output width set to 5, the 

Fixed Rounder would return 0b1000, instead of the intended 0b1001.  The code was modified to 

account for this case, the test vector added to the test bench, and the Fixed Rounder was 

successfully simulated for all the test vectors. 

33 



Figure 4-1:  Sample of Fixed Rounder Test Bench Simulation 
  

34 



4.1.2 Configurable Rounder 

 of the test bench simulation for the Configurable Rounder.  

The test

t 

 

 in the configurable rounder.  In 

the figu

Rounder simulated correctly for all input vectors. 

4.1.3 

 of the test bench simulation for the Output Gain Stage.  The 

paramet  

e 

 a 

or 

The Configurable Rounder block used in this simulation has different parameters than the 

macro u

 

simulation has the same parameters as the first Fixed Rounder simulation, except ro is set to one. 

The Output Gain Stage simulated correctly for all test vectors. 

Figure 4-2 shows a sample

 bench sets the input width to 23, the output width to 12, the rounder select width to 4, 

and the radix position (cr_rad_pos) to 11.  It also instantiates a pipeline register on the outpu

by setting ro to one.  The pipeline register is set to a synchronous reset by setting rt to one.  The

out_load_enable signal shown is not used, because the output register is not set to two.    

Since there is a register on the output, the q_out shown is the rounded output for the previous 

input.  It should be noted that the Fixed Rounder block used in this simulation has different 

parameters than the Fixed Rounder in the previous simulation.  

The ext_d_in signal shown is the array that is created

re, it is broken down into its four component signals, labeled (0) to (3).  Entry (0) 

corresponds to the signal in Figure 3-2 that is just sign extended, and (3) corresponds to the 

signal that is just padded. 

The Configurable 

Output Gain Stage 

Figure 4-3 shows part

ers controlling the width are displayed in the simulation.  Because of the number of

parameters in this design, the parameters controlling the insertion of registers were left off th

simulation output.  In this test bench ri, ro, rc, pr, and rt are all set to one.  This will insert

pipeline register with a synchronous reset on the inputs d_in, cr_rndr_sel, and gain.  A 

pipeline register will be inserted between the Configurable Rounder instantiation and the 

multiplier, and on the output of the fixed rounder.  This leads to a complicated data flow.  F

example, the fifth q_out in Figure 4-3 is 0x0F6.  The d_in and cr_rndr_sel used to 

calculate this answer are 0x0004EE0 and 0b011, which are input to the system three clock cycles 

before the output is ready.  The gain used, 0x32, is input two clock cycles before the output is 

ready. 

sed in the previous simulation.  The Fixed Rounder inside the Configurable Rounder has 

different parameters than the two used in previous simulations.  The second Fixed Rounder in this

35 



 
Figure 4-2:  Sample of Configurable Rounder Test Bench Simulation 

36 



Figure 4-3:  Sample of Output Gain Stage Test Bench Simulation 
 

37 37 



4.2 FFT Results 

The simulations in this section were run using the test bench described in section 3.2.7.  

MATLAB was used to create the test vectors, and the same test vectors are used in all the 

simulations where N is equal to 64.  Except for the section covering FFT results from different 

numbers of inputs, all the simulations are using a 64-point FFT. 

4.2.1 MATLAB 

 MATLAB is used to generate the test vectors and to compare the outputs to what 

MATLAB calculates them to be.  The test vectors that are generated by default are a sinc wave 

followed by a square wave.  These are used because in the frequency domain they change from 

one to another.  So the FFT of the sinc wave is a square wave, and the FFT of a square wave is a 

sync wave.   

 All the simulations in the following sections use the same formulas to determine the test 

vectors.  The Sinc Wave input uses sinc((x-N/2)/2), and the square wave has a duty cycle of 

0.125.   

4.2.2 Pre-synthesis and Pre-layout 

 Figure 4-4 shows a comparison of the same clock cycles for the Pre-synthesis simulation 

and the pre-layout simulation.  Figure 4-4(i) shows the Pre-synthesis simulation.  This simulation 

is event driven and is using a ∆ delay.  Figure 4-4(ii) shows the pre-layout simulation, and is 

using a fixed delay of 1 ns per gate and is also event driven.  Due to some timing issues with how 

the test bench writes the data out (it writes to the file on the falling edge), the pre-layout 

simulation is using a clock with a 200 ns period, while the Pre-synthesis is using a 100 ns clock 

period.  The figures are showing the waveforms near the clock cycle at the end of the first input 

vector.  The control signal in Figure 4-4(i) shows the value of the counter in the main FFT. 

 When control is 0x3F (the maximum value for the counter), the last vector from the sinc 

wave input is shown in xrsi (real component) and xisi (imaginary component).  The Pre-synthesis 

simulation, since it has no real delay for the logic, produces the output faster than the pre-layout 

simulation.  The lines on the output signals that go from 13200 ns until the value of the signal is 

displayed are the transitions the outputs are going through.  The signals eventually stabilize to the 

correct values.  When the test bench was running with a 100 ns clock, the data being written to 

the file was incorrect, because the signals had not stabilized yet.  After the clock was changed to a 

200 ns period, the pre-layout simulation operated correctly. 

38 



 

4-4:  Pre-layout  Sa

39 

mple SimulationFigure   Pre-synthesis and

(ii):  Pre-

(i):  Pre-synthe

layout Simulation

sis Simulation 

 

 



On the third clock cycle, the delay in the post-layout simulation is much smaller.  This is 

because the control signal is now all zeros, so all the butterflies are in passing mode.  When 

the butterfly in the last stage is in passing mode, the output of the FFT will be the value that was 

stored in the 1-stage shift register.  Every clock cycle where the lowest bit of the control signal 

is zero, the output from the FFT has a short delay. 

4.2.3 Layout and Post-layout 

The layout for the 64-point FFT was placed and routed using a TSMC 0.18 micron 

process, using standard cells for the logic functions.  This process has 6 metal layers, which are 

the most visible element of the layout in Figure 4-5.  In order to leave space for routing over the 

circuit, only the lower 4 metal layers were used.  After PAR, the circuit delays were back

40 

annotated and the simulation checked again to see if the layout would simulate correctly.  The 

layout simulated the test vector correctly.  Figure 4-6 shows the results of the post-layout

simulation. 

Overall, the layout is 610.5 µm by 4 µm.  The total area is 372649.2 µm2 yout 

has 159,074 transistors for the 64-point FFT.  For the 256-point FFT, the number of transistors 

grew to 455,305.  For the 1024-point FFT, with mult_g set to 4 instead of 9, the nu

transistors grew to 1,268,238. 

4.2.4 Hardware Testing 

The FFT macro was fabricated with a BIST, due to the large number of inputs an

outputs.  The BIST was designed to be the only operating mode of the chip, but otherwise was 

designed as shown in Figure 2.3.  On a reset, the BIST would start.  The load enable signal in the 

FFT is controlled by the BIST.  On the first clock cycle after a reset, all zeros are input to  

FFT.  On the second, the load enable signal is set to high, and the first test vector is loaded.  The 

test vectors in the ROM are the same vectors that were generated by MATLAB.  The signature 

was generated in a post-layout simulation of the BIST.  The signature compressor takes each part 

of the output, real and imaginary, and uses two 36-bit LFSR structures to generate two 36 bit 

signatures, which it compares to the signatures that were stored. 

Figure 4-7 shows the layout of the chip that was fabricated.  There were several groups 

involved in this project, so there are some parts of the chip that were not tested.  Each FFT 

module was tested first at 10 Hz, to make sure there were no timing problems with generating the 

output.  Then, they were tested at 1 kHz and 1 MHz, to verify the designs were working.  The 

-

 

e la

r of 

d 

 the

.  Th

mbe

 610.



Figure 4-5:  Layout of the 64-point FFT 
 

41 



42 

 Figure 4-6:  Post-layout Simulation Sample



43 43 

Figure 4-7:  Layout of Fabricated Chip 



baseline module and the best PDA (power-delay-area product) module implemented at the 

University of Tennessee worked correctly.  The FFT module implemented by the University of 

California at Santa Cruz is still being tested at this time.  Further testing needs to be done to 

accurately measure the power used by each module and to find the maximum frequency that the 

modules operate at. 

4.2.5 FFT Flexibility 

 Figure 4-8, 4-9, and 4-10 show the output of Pre-synthesis simulation of the FFT using 

different numbers of points.  The other parameters remain the same, except for the 1024 point 

uses a mult_g of 4 instead of 9, to cut down on the amount of logic used.  Figure 4-8(i) shows 

an 8-point FFT simulation.  As the number of points increases, the FFT of the sinc wave input 

becomes more like an ideal square wave.  The increasing noise in the angle of the square wave 

output is from the smaller values at each point.  The inaccuracy of a digital representation is 

significant compared to the values of the signals at those points, which manifests in the angle 

more than in the magnitude. 

 The FFT was also synthesized to 250 and 130 nm processes.  Table 1 shows the 

estimated PDA, normalized to the 180 nm process.  The operating voltages are also shown.  The 

power was estimated at a 20 MHz operating frequency in the pre-layout testing stage.  The table 

shows 8-fold improvements between processes.  

 

Table 1: Normalized PDA Estimates for Different Processes 

Feature Size 250 nm 180 nm 130 nm 
Operating Voltage 2.5v 1.8v 1.2v 
PDA Normalized to 180 nm 0.15 1.00 8.74 

44 



(i) N=8 

(ii) N=32 

Figure 2  4-8:  FFT Simulations for Different N: 8, 3

45 



Figure 4-9:  FFT Simulations for Different N: 64, 128 

(i) N=64 

(ii) N=128 

46 



47 

 

(

(

i) N=256 

ii) N=1024 

 
Figure 4-10:  FFT Simulations for Different N: 256, 1024



Chapter 5: Conclusions and Future Work 

 The FFT algorithm was successfully created and tested through post-layout simulations.  

The macro has been created and tested successfully in hardware.  A method for creating test 

vectors was created for different parameters, and the FFT was synthesized and tested for different 

numbers of points.  The FFT was synthesized to different processes.  The Rounder macros were 

each created and successfully simulated.  The Fixed Rounder macro was successfully instantiated 

with different parameters. 

 By successfully designing and verifying the FFT, it was shown that designing a flexible 

macro of moderate complexity in VHDL was possible.  Future studies involving this FFT might 

include comparing its capabilities and flexibility to other FFT algorithms.  Implementing and 

testing the FFT in hardware for several different configurations could also be done.  Additional 

work can be done to create more DSP modules and create a library of parameterized VHDL 

macros.  Future research could also explore how much time is saved using this FFT algorithm 

compared to developing an FFT algorithm from scratch, and to modifying a non-parameterized 

version of the FFT to make it work with a different configuration. 

There are several modifications that could be performed on the FFT code.  Better default 

values could be created, or an exploration can be performed of how the bit growth for the 

multipliers and addition can be changed and what the optimum parameter values are for a given 

input width and desired output width.  If a twiddle factor generator were created to replace the 

ROM based twiddle factor look-up, this algorithm could be expanded to larger sizes.   User-

controlled pipelining could be implemented also, with options for different pipelined 

configurations. 

 Overall this research was a success.  By creating the FFT module, an example of a 

parameterized macro is available.  By creating the Rounder macros, some simple examples of 

useful parameterized macros are available.  By verifying the FFT, it can be shown that it was 

successfully implemented, and the verification process can be used as an example.  The impact 

that these would have on design time would be significant if an engineer needs an FFT with 

specifications that are in the range of parameters this FFT has.  By expanding the range of 

parameters, it becomes more likely this FFT will be reused and save design time.

48 



 

 

 

 

 

 

 

List o nces f Refere

49 



[1]  Wikipedia: T

 Language Guide” 2000. July 2002.  

 

2.  

Drivers_Ed/lfsr.html> 

he Free Encyclopedia.  15 Jan. 2001.  20 July 2003.  

<http://www.wikipedia.org/wiki/Main_Page> 

 

[2]  Ashenden, Peter J.  The Designer’s Guide to VHDL, 2nd Edition.  Morgan Kaufmann, San 

Fransico, CA, 1996. 

 

[3]  Altium Limited.  “The VHDL

< http://www.acc-eda.com/vhdlref/refguide/toclist.htm> 

 

[4]  Smith, Stephen W.  The Scientist and Engineer’s Guide to Digital Signal Processing.  

California Technical Publishing, 1997. August 2002.  

<http://www.dspguide.com/pdfbook.htm> 

 

[5]  Bores Signal Processing.  “On-line DSP Class” DSP Training 2002.  September 2002. 

< http://www.bores.com/index_online.htm> 

[6]  Taft, Jeffery D.  “The Inverse FFT Page”, DSP Design Performance.  2001.  Oct. 200

<http://www.nauticom.net/www/jdtaft/inverseFFT.htm> 

 

[7]  Chan, Patrick, Jason Mah, Andrew Sung, and Raymond Sung.  “Linear Feedback Shift 

Register”, E552 Application Notes December 1999.  September 2002. 

<http://www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/1999f/

 

[8] He, Shousheng and Mats Torkelson.  “A New Approach to a Pipeline FFT Processor” 

1996.  August 2002.  <http://ipdps.eece.unm.edu/1996/PAPERS/S19/HE/HE.PDF> 

 

[9] Xilinx, Inc.  “Xilinx – Reference Designs” September 2002. 

 < http://www.xilinx.com/ipcenter/reference_designs/> 

50 



 

 

 

 

 

 

Appendices 

51 



Appendix A: Rounder Code 

utput_gain_stage.vhd 

block 
--so that it optimally loads the next block. 

USE ie
USE ie
SE ieee.std_logic_unsigned.all; 

 
 
   rndr_sel_width eger :=3; 
   gain_width :=7; 

  cr_output_width : integer :=16; 

 
   ro 

  rc : integer :=1; 

 downto 0); 
 -1 downto 0); 

  cr_rndr_sel : in std_logic_vector(rndr_sel_width-1 

 
 
 
nd output_gain_stage; 

signal

ignal cr_out : signed(cr_output_width-1 downto 0); 
nal o 0); 

 
component config_rndr 
 generic( 
      rndr_sel_width : integer;       -- bit width of config rounder 
select input 
      input_width    : integer;       -- bit width of data input 
      output_width   : integer;       -- bit width of data output 

o
--The output gain stage gain adjust and rounds the result of a DSP 

 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 

ee.std_logic_arith.all; 
ee.std_logic_signed.all; 

U
 
entity output_gain_stage is 

generic(input_width : integer :=25; 
  output_width : integer :=12; 

: int
: integer 

 
   cr_rad_pos : integer :=5; 
   fr_rad_pos : integer :=10; 

  ri : integer :=1; 
: integer :=1; 

 
   pr : integer :=1; 
   rt : integer :=1); 

port ( d_in : in signed(input_width-1 
  q_out : out signed(output_width

 
downto 0); 
   gain : in unsigned(gain_width-1 downto 0); 

  clock : in std_logic; 
  reset_n : in std_logic; 
  out_load_enable : in std_logic); 

e
 
architecture behavior of output_gain_stage is 
constant fri : integer :=cr_output_width+gain_width; 

 gain_sgnd : signed(gain_width downto 0); 
signal gain_reg : signed(gain_width downto 0); 
s
sig  cr_out_test : signed(cr_output_width-1 downt
signal mult_out : signed(fri downto 0); 
signal fr_input : signed(fri-1 downto 0); 

52 



      cr_rad_pos     : integer;       -- radix position for config 
rounder 
   ri : integer; 
   ro : integer; 
   rc : integer; 
   rt : integer); 
 port( 
      clock           : in std_logic;                             -- 
clock 
      reset_n       : in std_logic;                             -- 
active low reset 
      out_load_enable : in std_logic; 
      d_in          : in signed(input_width-1 downto 0);        -- 
input data 
      cr_rndr_sel   : in std_logic_vector(rndr_sel_width-1 downto 0);  
-- mux select for configurable rounder  
      q_out         : out signed(output_width-1 downto 0));     -- 
output data 
end component; 
 
component fixed_rndr 
 generic( input_width : integer; 
   output_width
   fr_rad_pos : integer; 
   ri: integer; 
   ro: integer; 
   rt: integer); 
 port (  d_in : in signed(input_width-1 downto 0); 
   clock : in std_logic; 
   reset_n : in std_logic; 
   out_load_enable : in std_logic; 
   q_out : out signed(output_width-1 downto 0)); 
end component;  
 
component plr 
 generic(width : integer; 
   rt : integer); 
 port ( clock : in std_logic; 
   reset_n : in std_logic;   
   d : in signed(width-1 downto 0); 
   q : out signed(width-1 downto 0)); 
end component; 
 
begin 
 gain_sgnd<=signed('0' & gain); 
gain_reg_on : if rc=1 generate 
 in_reg_gain : plr 
  generic map (width=>gain_width+1, rt=>rt) 
  port map  ( clock=>clock, reset_n=>reset_n, 
     d=>gain_sgnd, q=>gain_reg); 
end generate gain_reg_on; 
 
gain_reg_off : if rc/=1 generate 
 gain_reg<=gain_sgnd; 

 : integer; 

53 



end generate gain_reg_off; 
 
cfg_rndr : config_rndr

input_width=>input_width,  
output_width=>cr_output_width, 

 rt=>rt) 

 cr_rndr_sel=>cr_rndr_sel, 
>clock, reset_n=>reset_n, 
d_enable=>out_load_enable); 

rt=>rt) 
=>clock, reset_n=>reset_n, 

>cr_out_test); 

out_load_enable=>out_load_enable, 

 (sign ext/lsb padding) select. 

) 

 
 generic map (
    
    rndr_sel_width=>rndr_sel_width, 
    cr_rad_pos=>cr_rad_pos, 
    ri=>ri, ro=>0, rc=>rc,

port map ( d_in=>d_in, q_out=>cr_out,  
   
    clock=
    out_loa
pipe1_on : if pr=1 generate 
 cr_piped: plr 

 generic map(width=>cr_output_width,  
  port map ( clock
     d=>cr_out, q=
end generate pipe1_on; 
 
pipe1_off : if pr=0 generate 
 cr_out_test<=cr_out; 
end generate pipe1_off; 
     
process(gain_reg, cr_out_test) 
begin 
 mult_out<=cr_out_test*gain_reg; 
end process; 
fr_input<=mult_out(fri-1 downto 0); 
 
fix_rndr : fixed_rndr 
 generic map (input_width=>fri, 
    output_width=>output_width, 
    fr_rad_pos=>fr_rad_pos, 

     ri=>0, ro=>ro, rt=>rt)
 port map ( d_in=>fr_input, 
    clock=>clock, 

reset_n=>reset_n,     
    

    q_out=>q_out); 
end; 
 

config_rndr.vhd 
--Configurable rounder 
--I/O 
d_in : data input --

--q_out : data output 
ing--cr_rndr_sel : Padd

-- 
--Generics: 
--input_width  :  bit width of the input 
--output_width  :  bit width of the output 
--rndr_sel_width: Padding amount select width (sign ext/lsb padding

54 



--cr_rad_pos  : configurable rounder radix position.   
--    
--    

 bit position of the input that you 
 are rounding on. 

ri Input register type - 0/1 none/plr 
ro Output register type - 0/1/2 none/plr/z 
rc configuration register type - 0/1 none/plr 

: Reset select for registers - 0/1/2 

 ieee; 

 

rndr_sel_width : integer :=2; 
cr_rad_pos : integer :=11; 

: integer :=0; 
integer :=1; 

-1 downto 0); 
output_width-1 downto 0); 
d_logic_vector(rndr_sel_width-1 

); 

vior of config_rndr is 
nstant ws : integer:=rndr_sel_width; 

nteger:=input_width; 
gnal wnto 0); 

 
to 0); 

gnal r_rn _sel s-1 wnto 0); 
pe e ensi _arr ed(wi+2**ws-2 
wnto ); 

: extension_array; 
gnal fixed_rndr_input : signed(wi+2**ws-2 downto 0); 

gned(width-1 downto 0); 
  q : out signed(width-1 downto 0)); 

--   : 
--   : 
--   : 
--rt   
none/synch/asynch 
LIBRARY
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
USE ieee.std_logic_signed.all; 
USE ieee.std_logic_unsigned.all; 
 
entity config_rndr is 
 generic(input_width : integer :=23;
   output_width : integer :=12; 
   
   
   ri 
   ro : 
   rc : integer :=0; 
   rt : integer :=1); 
 port ( d_in : in signed(input_width
   q_out : out signed(
   cr_rndr_sel : in st
downto 0); 
   clock : in std_logic; 
   reset_n : in std_logic; 
   out_load_enable : in std_logic
end config_rndr; 
 
architecture beha
co
constant wi : i
si  d_in_reg : signed(wi-1 do
signal cr_temp : signed(ws-1 downto 0);
gnal _selsi  cr_rndr _reg : signed(ws-1 down

si  c dr _stdl : std_logic_vector(w do
ty xt on ay is array (0 to 2**ws-1) of sign
do  0
signal ext_d_in 
si
 
 
component plr 

eger;  generic(width : int
   rt : integer); 
 port ( clock : in std_logic; 
   reset_n : in std_logic;   
   d : in si
 
end component; 
 

55 



component zreg 
 generic(width : integer; 
   rt : integer); 
 port ( clock : in std_logic; 
   reset_n : in std_logic; 
   out_load_enable : in std_logic;   
   d : in signed(width-1 downto 0); 
   q : out signed(width-1 downto 0)); 
end component; 
 
component fixed_rndr 
 generic( input_width : integer; 
   output_width : integer; 

 in signed(input_width-1 downto 0); 
  clock : in std_logic; 

 : in std_logic; 
 out signed(output_width-1 downto 0)); 

 : plr 
_width, rt=>rt) 

 d=>d_in, q=>d_in_reg); 

 generic map (width=>rndr_sel_width, rt=>rt) 
 port map ( clock=>clock, reset_n=>reset_n, 

  d=>cr_temp, q=>cr_rndr_sel_reg); 
sel_stdl<=std_logic_vector(cr_rndr_sel_reg); 

 generate 
=cr_rndr_sel; 

reg) 

   fr_rad_pos : integer; 
   ri: integer; 
   ro: integer; 
   rt: integer); 
 port (  d_in :
 
   reset_n : in std_logic; 
   out_load_enable
   q_out :
end component; 
 
begin 
d_in_reg_on : if ri=1 generate 
 in_reg_d
  generic map (width=>input

 port map ( clock=>clock, reset_n=>reset_n,  
    
end generate d_in_reg_on; 
 
d_in_reg_off : if ri/=1 generate 
 d_in_reg<=d_in; 
end generate d_in_reg_off; 
 
cr_reg_on : if rc=1 generate 
 cr_temp<=signed(cr_rndr_sel); 
 in_reg_cr : plr 
 
 
   
 cr_rndr_
end generate cr_reg_on; 
 
cr_reg_off : if rc/=1
 cr_rndr_sel_stdl<
end generate; 
 
process(d_in_
begin 
 for i in 0 to 2**ws-1 loop 
  for j in (wi+2**ws-2) downto 0 loop 
   if j>(wi+i-1) then 

56 



    ext_d_in(i)(j)<=d_in_reg(wi-1); 
   else 
    if j<i then 
     ext_d_in(i)(j)<='0'; 
    else 
     ext_d_in(i)(j)<=d_in_reg(j-i); 
    end if; 
   end if; 

 loop; 

 

=ext_d_in(conv_integer(unsigned(cr_rndr_sel_stdl
); 

, 
ut_width, 
_pos, 

 ( 

  out_load_enable=>out_load_enable, 

 rounds it 
g), 

can be any number greater than 1. 
an 1. 
osition that is  

             being rounded. 

 
Gene cs: 
inpu widt  

: fixed rounder radix position.   

  end
 end loop; 
end process; 
 
process(cr_rndr_sel_stdl,ext_d_in)
begin 
 fixed_rndr_input<
))
end process; 
 
fixed_rounder: fixed_rndr 
 generic map (input_width=>wi+2**ws-1
    output_width=>outp
    fr_rad_pos=>cr_rad
    ri=>0, ro=>ro, rt=>rt) 
 port map d_in=>fixed_rndr_input,  
    clock=>clock, 
    reset_n=>reset_n, 
  
    q_out=>q_out); 
 
     
end;  
 

fixed_rndr.vhd 
--Fixed rounder 

e,--Takes an input of input_width bits wid
--  at fr_rad_pos radix position (0 is no roundin
--  then converts it to output_width bits wide by  
--  padding or clipping. 
-- 
--input_width:  bit width of input, 
--output_width:  bit width of output, must be greater th
fr_rad_pos:  integer value, radix position of input, p--

--
-- 
-I/O -
--d_in:  data input 
--q_out:  data output 
--
-- ri
-- t_ h :  bit width of the input 

:  bit width of the output --output_width  
fr_rad_pos  --

57 



--     bit position of the input that you 
on. 

type - 0/1 none/plr 
ype - 0/1/2 none/plr/z 

ic_1164.all; 
E ieee.std_logic_arith.all; 

ger :=12; 
r :=10; 

 0); 

out_load_enable : in std_logic; 
  q_out : out signed(output_width-1 downto 0)); 
ed_rndr; 

chit of fixed_rndr is 

integer :=2**(input_width-abs(fr_rad_pos)-

*(abs(input_width-fr_rad_pos-

turn unsigned is 
variable slv: unsigned(n-1 downto 0); 

d on ; 

port ( clock : in std_logic; 
td_logic;   

nto 0); 
q : out signed(width-1 downto 0)); 

d component; 

nt zreg 

--     are rounding 
--ri   : Input register 
ro --   : Output register t

--rt   : Reset select for registers - 0/1/2 
none/synch/asynch 
 
LI Y ; BRAR ieee
USE ieee.std_log
US
USE ieee.std_logic_signed.all; 
 
entity fixed_rndr is 
 generic( input_width : integer :=23; 
   output_width : inte
   fr_rad_pos : intege
   ri: integer :=0; 
   ro: integer :=0; 
   rt: integer :=1); 
 port (  d_in : in signed(input_width-1 downto
   clock : in std_logic; 
   reset_n : in std_logic; 
   
 
end fix
 
ar ecture behavior 
signal d_in_reg: signed(input_width-1 downto 0); 
signal q_out_reg: signed(output_width-1 downto 0); 
signal rounded: signed(input_width-fr_rad_pos-1 downto 0); 
--constant overflowcheck : 
-1; 1)

--constant negcheck : integer :=2*
output_width)+1)-1; 
function ones(n: integer) re
 
begin 
 slv:=(others=>'1'); 
 return slv; 
en es
 
component plr 
 generic(width : integer; 

teger);    rt : in
 
   reset_n : in s
   d : in signed(width-1 dow
   
en
 
compone
 generic(width : integer; 
   rt : integer); 
 port ( clock : in std_logic; 

58 



   reset_n : in std_logic; 
   out_load_enable : in std_logic; 
   d : in signed(width-1 do

  
wnto 0); 

p (width=>input_width, rt=>rt) 
rt map ( clock=>clock, reset_n=>reset_n, 

    d=>d_in, q=>d_in_reg); 

d_in_reg<=d_in; 
n_reg_off; 

nto 

nto 0)<=(others=>'0'); 

downto 
r_rad_pos-1) then 

   rounded<=d_in_reg(input_width-1 downto 
_pos); 

 else 
  if (fr_rad_pos=1) then 
  

n_reg(fr_rad_pos-2 
,fr_rad_pos-1)) and (d_in_reg(input_width-

ounded<=signed(d_in_reg(input_width-1 downto 
(fr_rad_pos-1); 

  end if; 
 end if; 

 end if; 
if

f
;

   q : out signed(width-1 downto 0)); 
end component; 
 
begin 
in_reg_on: if ri=1 generate 
 in_reg: plr 
  generic ma
  po
 
end generate in_reg_on; 
 
in_reg_off : if ri/=1 generate 
 
end generate i
 
 process(d_in_reg) 
 begin 
  if (fr_rad_pos<0) then 
   rounded(input_width-fr_rad_pos-1 dow
abs(fr_rad_pos))<=d_in_reg; 
   rounded(0-fr_rad_pos-1 dow
  else  
   if (fr_rad_pos=0) then 
    rounded<=d_in_reg; 
   else 

   if unsigned(d_in_reg(input_width-1  
fr_rad_pos))=ones(input_width-f
  
r_radf
   
   
   
 rounded<=signed(d_in_reg(input_width-1 downto 
fr_rad_pos))+d_in_reg(fr_rad_pos-1); 
     else 

 if (unsigned(d_i     
nto 0))=conv_unsigned(0dow

1)='1') then 
      
 rounded<=d_in_reg(input_width-1 downto fr_rad_pos); 

 else      
      

 r
fr_rad_pos))+d_in_reg
    

    
   
   end ; 
  end i ; 

ess end proc  
  

59 



extending: if (input_width-fr_rad_pos)<=output_width generate 
 q_out_reg(input_width-fr_rad_pos-1 downto 0)<=rounded
 q_out_reg(output_width-1 downto (input_width-

; 

g; 
_width-fr_rad_pos)>output_width generate 

process(rounded) 

idth-fr_rad_pos-1)='0' then 
ounded(input_width-fr_rad_pos-1 downto 
0,input_width-fr_rad_pos-

tput_width+1) then 
q_out_reg(output_width-1)<='0'; 

to 0 loop 

d(output_width-1 downto 0); 

dth-fr_rad_pos-1 downto 
tput_width+1) then 

 if output_width>2 then 

t_reg(i)<='0'; 

 q_out_reg(0)<='1'; 
2 then 
output_width-2 downto 1 

 q_out_reg(i)<='0'; 
  end loop; 

   end if; 
  else 

  q_out_reg<=rounded(output_width-1 downto 
; 

   

if
d pr ess;

 ro=1 generate 

output_width, rt=>rt) 
eset_n=>reset_n, 
g, q=>q_out); 

fr_rad_pos))<=(others=>rounded(input_width-fr_rad_pos-1)); 
end generate extendin
clipping: if (input
 
 begin 
  if rounded(input_w
   if unsigned(r
output_width-1))/=conv_unsigned(
ou
    
    for i in output_width-2 down
     q_out_reg(i)<='1'; 
    end loop; 
   else 
    q_out_reg<=rounde
   end if; 
  else 
   if unsigned(rounded(input_wi
output_width-1))/=ones(input_width-fr_rad_pos-ou
    q_out_reg(output_width-1)<='1'; 
    q_out_reg(0)<='1'; 
   
     for i in output_width-2 downto 1 loop 
      q_ou
     end loop; 
    end if; 
   else 
    if unsigned(rounded(output_width-2 downto 
0))=conv_unsigned(0,output_width-1) then 
     q_out_reg(output_width-1)<='1'; 
    
     if output_width>
      for i in 
loop 
      
    
  

  
   
0)
    end if;  
   end if; 
  end ; 
 en oc  
end generate clipping; 
 
t_reg_plr: ifou

 out_reg: plr 
  generic map (width=>
  port map ( clock=>clock, r
     d=>q_out_re

60 



end generate out_reg_plr; 
 
out_reg_z: if ro=2 generate 
 out_reg: g zre

ric map (width=>output_width, rt=>rt) 
 port map ( clock=>clock, reset_n=>reset_n, 

   out_load_enable=>out_load_enable, 
d=>q_out_reg, q=>q_out); 

 

ts. 

ownto 0); 

n 

erate  

  gene
 
  
     
end generate out_reg_z; 
 
out_reg_off : if ro/=1 and ro/=2 generate 
 q_out<=q_out_reg; 
end generate out_reg_off;
end; 
 
plr.vhd 
--Pipline Register of n bi
--only 1 stage deep 

a --signed type dat
-- 
--Reset is set by: 
--  0 - no reset 
--  1 - synchronous reset 

set --  2 - asynchronous re
--Reset is active low 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
USE ieee.std_logic_signed.all; 
 
entity plr is 
 generic(width : integer:=10; 

:=1);    rt : integer
 port ( clock : in std_logic; 
   reset_n : in std_logic;   
   d : in signed(width-1 d
   q : out signed(width-1 downto 0)); 
end plr; 
 
architecture behavior of plr is 
 
begin  
 none: if rt=0 generate 
 process(clock) 
  begin 
   if clock'event and clock='1' the
    q<=d; 
   end if; 
  end process; 
 end generate none; 
  

: if rt=2 gen asynch

61 



  process(clock,reset_n) 
  begin 
   if reset_n='0' then 
    q<=(others=>'0'); 
   else 
    if clock'event and clock='1' then 
     q<=d; 

ck='1' then 

1); 
in std_logic; 
 : in std_logic; 
ad_enable : in std_logic;  

(width-1 downto 0); 
d(width-1 downto 0)); 

    end if; 
   end if; 
  end process; 
 end generate asynch; 
  
 synch: if rt/=0 and rt/=2 generate 
  process(clock) 
  begin 
   if clock'event and clo
    if reset_n='0' then 
     q<=(others=>'0'); 
    else 
     q<=d; 
    end if; 
   end if; 
  end process; 
 end generate synch; 
end; 
 
zreg.vhd 
--Pipline Register of n bits. 
--only 1 stage deep 
--signed type data 
-- 
--Reset is set by: 
--  0  - no reset 
--  1  - synchronous reset 
--  2  - asynchronous reset 
--Reset is active low, defaults to synch 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
USE ieee.std_logic_signed.all; 
 
entity zreg is 

10;  generic(width : integer:=
teger:=   rt : in
:  port ( clock 
_n   reset

  out_lo 
   d : in signed

t signe   q : ou
nd zr g; e e
 
architecture behavior of zreg is 

62 



signal old_q : signed(width-1 downto 0); 

old_q<=d; 
   else 

; 

 end process; 
end generate none; 

 
_n) 

 reset_n='0' then 
q<=(others=>'0'); 
old_q<=(others=>'0'); 

and clock='1' then 
if out_load_enable='1' then 

  q<=d; 
   old_q<=d; 

else 
q<=old_q; 

d if; 

end if; 

  if reset_n='0' then 
(others=>'0'); 
_q<=(others=>'0'); 

  else  
if out_load_enable='1' then 
 q<=d; 
 old_q<=d; 

; 

d; 

begin 
 none: if rt=0 generate 

   process(clock)
  begin 
   if clock'event and clock='1' then 
    if out_load_enable='1' then 
     q<=d; 
     
 
     q<=old_q; 
    end if
   end if; 
 
 
  
 asynch: if rt=2 generate 

clock,reset  process(
  begin 

  if 
    

    
   else 
    if clock'event 

     
    

   
     
      
     en

   end if;  
   
  end process; 
 end generate asynch; 
  
 synch: if rt/=0 and rt/=2 generate 
  process(clock) 
  begin 

 if clock'event and clock='1' then   
  

     q<=
    old 

  
     
     

     
     else 

q<=old_q;       
nd if     e
;     end if

    end if;
end process;   

 end generate synch; 
en

63 



Appendix B: FFT Code

to a file called data.out. 

uts the fft output in bit reversed 

er of points 
12; --input width 

integer :=1; --adder growth 
: integer :=9; --Growth of the 

   twiddle_width : integer :=10 --width of twiddle 
oms 

 ); 
d_logic; 
std_logic_vector (m+((log2(N)-

add_g-1 downto 0); 
ut_i : out std_logic_vector (m+((log2(N)-
*add_g-1 downto 0) 
 

haracter into a std_logic 

ter) return std_logic is  

s := '
n 'Z' =>  

fft_filed_tb.vhd 
--File I/O version of the test bench 
--reads in a file called testvec, outputs 
--Only handles serial input/output. 
--Only needs a clock input, outp
order. 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_arith.ALL; 
USE std.textio.ALL; 
USE work.fft_pkg.all; 
 
 
entity fft_filed_tb is 
 generic ( N : integer :=64; --numb
    m : integer :=
    add_g : 
    mult_g 
multipliers; 
 
factor r
  
 port ( clock : in st

ut_r : out    Xo
)*1)/2)*mult_g+log2(N

  Xo 
1)/2)*mult_g+log2(N)

);   
end fft_filed_tb; 
 
architecture stateflow of fft_filed_tb is 
 
-- converts a c
 
function char_to_stdl(c: charac
    variable sl: std_logic; 
  begin   

      case c is 
        when 'U' =>  
           sl := 'U';  
        when 'X' => 
           sl := 'X'; 
        when '0' =>  
           sl := '0'; 
        when '1' =>  

l 1';            
      whe  

           sl := 'Z'; 

64 



        when 'W' =>  
           sl := 'W'; 
        when 'L' =>  
           sl := 'L'; 
        when 'H' =>  
           sl := 'H'; 
        when '-' =>  
           sl := '-'; 
        when others => 
           sl := 'X';  
    end case; 
   return sl; 
  end char_to_stdl; 
 
 
-- converts a string into std_logic_vector 

 std_logic_vector is  
'low downto 0); 

                            
) return string is 

o 1) := (others => 'X'); 

loop 
    en 

  en loop

   add_g : integer; 

fu on str_to_stdvec(s: string tuncti ) re rn
  variable slv: std_logic_vector(s'high-s
  variable k: integer; 
begin 
   k := s'high-s'low; 
  for i in s'range loop 
     slv(k) := char_to_stdl(s(i)); 
     k      := k - 1; 
  end loop; 
  return slv; 
end str_to_stdvec;  
 
--converts a std_logic_vector to a string           
function stdvec_to_str(inp: std_logic_vector
variable temp: string(inp'left+1 downt
begin 
    for i in inp'reverse_range 
    if (inp(i) = '1') th
         temp(i+1) := '1'; 
        elsif (inp(i) = '0') then 
            temp(i+1) := '0';  
        end if; 
  d ; 
    return temp; 
end;-- function stdvec_to_str; 
signal resetn : std_logic; 
signal load_enable : std_logic; 
signal xrsi : std_logic_vector (m-1 downto 0); 
signal xisi : std_logic_vector (m-1 downto 0); 
signal outdata_r : std_logic_vector (m+((log2(N)-
1)/2)*mult_g+log2(N)*add_g-1 downto 0);  
signal outdata_i : std_logic_vector (m+((log2(N)-
1)/2)*mult_g+log2(N)*add_g-1 downto 0);  
 
component fft 
 generic ( N : integer; 

integer;     m : 
 

65 



    mult_g : integer; 
     
 port ( clk : 

resetn : in std_logic; 
load_enable : in std_logic; 

vector(m-1 downto 0); 

ult_g+log2(N)*add_g-1 downto 0) 
); 

iddle_width=>twiddle_width) 
lock,resetn=>resetn,load_enable=>load_enable, 

; 

gin 
outd ta_r;

log2(N)-
)*2 downto 1); 

a_r) & 

t,file_line); 
file_line,stimulus_in); 

=str_to_stdvec(stimulus_in); 
t and clock='1') and not endfile(my_input)) 

m_stdl(m*2+1); 
e<=stim_stdl(m*2); 
stdl(m*2-1 downto m); 
_stdl(m-1 downto 0); 

twiddle_width : integer);
in std_logic; 

   
   
   xrsi : in std_logic_
   xisi : in std_logic_vector(m-1 downto 0); 

c_vector (m+((log2(N)-   Xrso : out std_logi
1)/2)*mult_g+log2(N)*add_g-1 downto 0); 
   Xiso : out std_logic_vector (m+((log2(N)-
/2)*m1)

   
end component; 
 
begin 
fft_core : fft 

generic map (N=>N, m=>m, add_g=>add_g, mult_g=>mult_g,  
tw
 port map ( clk=>c
    xrsi=>xrsi, xisi=>xisi, 
    Xrso=>outdata_r, Xiso=>outdata_i)
process(outdata_r,outdata_i) 
be
 Xout_r<= a  
 Xout_i<=outdata_i; 
end process; 
 
oces  pr s(clock)

 file my_output : TEXT open WRITE_MODE is "data.out"; 
 file my_input : TEXT open READ_MODE is "testvec"; 
 variable my_data, file_line :LINE; 
 variable stimulus_in : STRING (m*2+2 downto 1); 

tring ((m+(( variable data_out : s
)*add_g1)/2)*mult_g+log2(N

variable stim_stdl : std_logic_vector(m*2+1 downto 0);  
begin 

if ((clock'event and clock='0') and not endfile(my_input)) then  
  data_out:=stdvec_to_str(outdat
dvec_to_str(outdata_i); st

  write(my_data,data_out); 
ut,my_data);   writeline(my_outp

readline(my_inpu  
  read(
  stim_stdl:
 elsif ((clock'even
then 
  resetn<=sti
  load_enabl
  xrsi<=stim_
  xisi<=stim
 end if;  
end process; 
end stateflow; 

66 



fft.vhd 
LIBRARY ieee; 
USE ieee.std_logic_1164

it
.ALL; 
h.ALL; 

teger :=1024;--number of samples 
Serial_in : integer :=1; --1/0 serial/parallel 

 Serial_out: integer :=1; --1/0 serial/parallel 

Output_order_in_natural: integer :=0; --1/0 
tput in natural/bit rev. order 

bit width of input 
ders, 1 

ing 
le_width+1 
twiddle_width : integer :=10 
; 

ent ports 
c_vector(m-1 downto 0) :=(others 

xisi : in std_logic_vector(m-1 downto 0) :=(others 

i : in ioarray(0 to N-1) :=(others =>(m-1 downto 0 

); 
c_vector(m+((log2(N)-

nto 0); 
y(0 to N-1) :=(others 
*add_g-1 downto 0 =>'0')); 

rray(0 to N-1) :=(others 
/2)*mult_g+log2(N)*add_g-1 downto 0 =>'0')); 
--required ports 

ogic; 
in std_logic; 
_logic 

g+num_stages*add_g; 
nto 0); 

 : std_logic_vector(m-1 downto 0); 
: tor(w-1 downto 0); 

nto 0); 

USE ieee.std_logic_ar
use work.fft_pkg.all; 
 
entity fft is 
 generic ( N : in
    
in 
   
out 

    
ou
    m : integer :=12; --
    add_g : integer :=1; --Growth during ad
or 0 

mult_g : integer :=4; --growth dur    
liers, up to twiddmultip

    
    )
 port ( --parameter-depend

 : in std_logi   xrsi
=>'0'); 
   
=>'0'); 
   xrp--

=>'0')); 
downto 0 --   xipi : in ioarray(0 to N-1) :=(others =>(m-1 

=>'0')); 
  Xrso : out std_logic_vector(m+((log2(N)- 

1)/2)*mult_g+log2(N)*add_g-1 downto 0
d_logi   Xiso : out st

t_g ow1)/2)*mul +log2(N)*add_g-1 d
--   Xrpo : out ioarra

2(N)=>(m+((log2(N)-1)/2)*mult_g+log
Xipo : out ioa--   

-1)=>(m+((log2(N)
   
   clk : in std_l

le :    load_enab
   resetn : in std
   ); 
end fft; 
 
architecture structure of fft is 
constant num_stages : integer :=log2(N); 
constant w : integer := m+((num_stages-1)/2)*mult_
gnal incore_r : std_logic_vector(m-1 dowsi

signal incore_i
ignals  outcore_r  std_logic_vec
signal outcore_i : std_logic_vector(w-1 dow
 

67 



component fft_core 
 generic (input_width: integer; 
   twiddle_width: integer; 

gic; 
downto 0); 

ector(input_width-1 downto 0); 
out std_logic_vector (input_width+((log2(N)-

2(N)*add_g-1 downto 0); 
  Xout_i : out std_logic_vector (input_width+((log2(N)-
ult_g+log2(N)*add_g-1 downto 0) 

); 

mpon

_in_natural: integer 

d_logic; 
in std_logic; 

resetn : in std_logic; 
  pdata_r : out ioarray(0 to N-1); 

pdata_i : out ioarray(0 to N-1); 
to 0); 

ownto 0) 

clock : in std_logic; 

 in ioarray(0 to N-1); 
 N-1); 

input_width-1 downto 

(input_width-1 downto 0) 

twiddle_width, N=>N,  
dd_g=>add_g,mult_g=>mult_g) 

 ( clock=>clk, resetn=>resetn, load_enable=>load_enable, 
 xin_r=>incore_r, xin_i=>incore_i, 

    Xout_r=>outcore_r, Xout_i=>outcore_i 

   N : integer; 
   add_g : integer; 
   mult_g : integer); 
 port ( clock : in std_logic; 
   resetn : in std_logic; 
   load_enable : in std_lo
   xin_r : in std_logic_vector(input_width-1 
   xin_i : in std_logic_v
   Xout_r : 
1)/2)*mult_g+log
 
1)/2)*m
   
end component; 
 
co ent s2pconv 
 generic (width: integer; 
   N: integer; 
   Output_order
   ); 
 port ( clock : in st
   load_enable : 
   
 
   
   Xout_r : in std_logic_vector (width-1 down
   Xout_i : in std_logic_vector (width-1 d
   ); 
end component; 
 
component p2sconv 
 generic (input_width : integer; N : integer); 
 port (  
   load_enable : in std_logic; 
   resetn : in std_logic; 
   pdata_r :
   pdata_i : in ioarray(0 to
   xin_r : out std_logic_vector (
0); 
   xin_i : out std_logic_vector 
   ); 
end component; 
 
begin 
 
fft_main: fft_core 

> generic map (input_width=>m, twiddle_width=
    a
 port map

   

68 



    ); 

 

 

 
end nera ; 

se , 

tcore_i); 

nging from 8 to 

of the input vector 
 width - width of the twiddle factors stored in the ROM 

row 0 or 1 bits each time they are 

1 - Growth during 

 
s_in : if Serial_in=1 generate
 incore_r<=xrsi; 
 incore_i<=xisi; 
d generate; en

 
--p_in : if Serial_in=0 generate 
-- input_conv : p2sconv 
--  generic map (input_width=>m, N=>N) 
--  port map ( clock=>clk, load_enable=>load_enable, 
resetn=>resetn, 
--     pdata_r=>xrpi, 
--     pdata_i=>xipi, 
- -     xin_r=>incore_r, xin_i=>incore_i);
-- ge te
 
s_out : if Serial_out=1 generate 
 Xrso<=outcore_r; 
 Xiso<=outcore_i; 
end generate; 
 
--p_out : if Serial_out=0 generate 
-- output_conv : s2pconv 
- -  generic map (width=>w, N=>N, 
Output_order_in_natural=>Output_order_in_natural) 
--  port map ( clock=>clk, load_enable=>load_enable, 
resetn=>re tn
--     pdata_r=>xrpo, 
--     pdata_i=>xipo, 
--     Xout_r=>outcore_r, Xout_i=>ou
--end generate; 
 
end; 
 

fft_core.vhd 
-- N point FFT 
-- Uses R2^2SDF algorithm 
-- 
-- Generics used: 

nly, ra-- N - number of points taken - powers of 2 o
1024 points. 

width - bit width -- input_
 twiddle--

-- add_g - Adder growth - Adders g
used 
--         Exculdes adders in the complex multiplier (that is handled 
by mult_g) 
-- mult_g - multiplier growth - 0 to twiddle_width+
the complex 
--   multiplier stages 
 --

69 



-- Width of output vector is as follows (num_stages=log2(N): 

d_g) + mult_g 
dd_g) + 2*mult_g 

s * add_g) + 3*mult_g 
 * add_g) + 4*mult_g 

 
ble, there are many 

 

L; 
.all; 

eger :=12; 
h : integer :=10; 

:=1;  --Either 0 or 1 only. 
:=9  --Can be any number from 

0); 
n std_logic_vector(input_width-1 downto 0); 

/2)*mult_g+log2(N)*add_g-1 downto 0); 

l control: std_logic_vector(num_stages-1 downto 0); 

downto 0); 
gnal stoscon_r: stage_array; 

stoscon_i: stage_array; 
pe rom_array is array (1 to (num_stages-1)/2) of 

ddle_width-1 downto 0); 

--    N   width 
--   8,16  input_width + (num_stages * ad

stages * a--  32,64  input_width + (num_
-- 128,256  input_width + (num_stage
-- 512,1024  input_width + (num_stages
--
-- Due to the way this system was made parameteriza
signals 
-- that will remain unconnected.  This is normal. 
--
-- Default generics are for a simple 64 point FFT 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_arith.AL
use work.fft_pkg
 
entity fft_core is 
 generic ( input_width : int
    twiddle_widt
    N : integer :=64; 
    add_g : integer 
    mult_g : integer 
0 to twiddle_width+1 
   ); 
 port ( clock : in std_logic; 
   resetn : in std_logic; 
   load_enable : in std_logic; 
   xin_r : in std_logic_vector(input_width-1 downto 
   xin_i : i

Xout_r : out std_logic_vector (input_width+((log2(N)-   
1)
   Xout_i : out std_logic_vector (input_width+((log2(N)-
1)/2)*mult_g+log2(N)*add_g-1 downto 0) 
   ); 
end fft_core; 
 
architecture structure of fft_core is 
--Signal declarations 
constant num_stages: integer :=log2(N); 
signa
type stage_array is array (1 to num_stages-1) of 

t_width+(num_stages*add_g)+(((num_stages- std_logic_vector(inpu
1)/2)*mult_g)-1 
si
signal 
ty
std_logic_vector(twi
signal rtoscon_r: rom_array; 
signal rtoscon_i: rom_array; 
--component declarations 
component counterhle 
 generic (width : integer); 

70 



 port (  clock : in std_logic; 

in std_logic; 
t std_logic_vector(width-1 downto 0) 

integer; address_width : integer); 
rt r (address_width-1 

datar    : OUT    std_logic_vector (data_width-1 

 

); 

nteger; address_width : integer); 
dress    : IN     std_logic_vector (address_width-1 

WNTO 0); 
    std_logic_vector (data_width-1 

d_logic_vector (data_width-1 

WNTO 0); 
  datar    : OUT    std_logic_vector (data_width-1 
O 0); 

 datai    : OUT    std_logic_vector (data_width-1 
   

); 

h-1 

 

dd_g : INTEGER; shift_stages 
TEGER); 

   resetn : in std_logic; 
   load_enable : 

 ou   countout :
    ); 
end component; 
 
component rom1 
 generic (data_width : 
 po (address    : IN     std_logic_vecto
DOWNTO 0); 
        
DOWNTO 0); 
        datai    : OUT    std_logic_vector (data_width-1
DOWNTO 0)    
   
end component; 
 
component rom2 
 generic (data_width : i
 port (ad
DO
        datar    : OUT
DOWNTO 0); 
        datai    : OUT    st
DOWNTO 0)    
   ); 
end component; 
 
component rom3 
 generic (data_width : integer; address_width : integer); 

ess    : IN     std_logic_vector (address_width-1  port (addr
DO
      
OWNTD
       
DOWNTO 0) 
   
end component; 
 
component rom4 
 generic (data_width : integer; address_width : integer); 
 port (address    : IN     std_logic_vector (address_width-1 
DOWNTO 0); 
        datar    : OUT    std_logic_vector (data_widt
DOWNTO 0); 
        datai    : OUT    std_logic_vector (data_width-1
DOWNTO 0)    
   ); 
end component; 
 
component stage_I 

generic (data_width : INTEGER; a 
: IN

71 



 port (prvs_r :in std_logic_vector(data_width-1-add_g downto 0); 
_g downto 

 in 

nto 
  

generic (data_width : INTEGER; add_g : INTEGER; mult_g : 

h : INTEGER; shift_stages : INTEGER); 
ic_vector(data_width-1-add_g downto 0); 

i :in std_logic_vector(data_width-1-add_g downto 
; 

:in std_logic; s :in std_logic; clock : in 

(twiddle_width-1 downto 
; 

r(data_width+mult_g-1 

d co onen  

add_g : INTEGER); 
rt 

s :in std_logic; clock : in std_logic; resetn : in 

ic_vector(data_width-1 downto 

_vector(data_width-1 downto 

INTEGER; add_g : INTEGER); 
c_vector(data_width-1-add_g downto 0); 

idth-1-add_g downto 

_logic; clock : in 

in std_logic; 
r :out std_logic_vector(data_width-1 downto 

   prvs_i :in std_logic_vector(data_width-1-add
0); 
   s :in std_logic; clock : in std_logic; resetn :
std_logic; 
   tonext_r :out std_logic_vector(data_width-1 dow
0); 
   tonext_i :out std_logic_vector(data_width-1 downto 
0)); 
end component; 
 
component stage_II 
 
INTEGER; 
   twiddle_widt
 port (prvs_r :in std_log
   prvs_
0)
   t 
std_logic; 
   resetn : in std_logic; 
   fromrom_r :in std_logic_vector
0)
   fromrom_i :in std_logic_vector(twiddle_width-1 downto 
0); 
   tonext_r :out std_logic_vector(data_width+mult_g-1 
downto 0);   
   tonext_i :out std_logic_vecto
downto 0)); 
en mp t;
 
component stage_I_last 
 generic (data_width : INTEGER; 
 po (prvs_r :in std_logic_vector(data_width-1-add_g downto 0); 
   prvs_i :in std_logic_vector(data_width-1-add_g downto 
0); 
   
d_logic; st

   tonext_r :out std_log
0);   
   tonext_i :out std_logic
0)); 
end component;  
 
component stage_II_last 
 generic (data_width : 
 port (prvs_r :in std_logi
   prvs_i :in std_logic_vector(data_w
0); 

gic; s :in std   t :in std_lo
std_logic; 
   resetn : 

xt_   tone
0);   

72 



   tonext_i :out std_logic_vector(data_width-1 downto 

ponent counterhle 
generic map (width=>num_stages) 

t par tege

nt rom_loc : integer :=i/2; 

=(num_stages-i); 
: integer :=(num_stages-i+1); 

initial_stage: if i=1 generate 
ial_stage_I :  component stage_I 

+ 

    add_g=>add_g, 

 port map (

, 
 tonext_r=>stoscon_r(i)(input_width 

(i-1)/2)*mult_g)-1 downto 0), 
   tonext_i=>stoscon_i(i)(input_width 

(i-1)/2)*mult_g)-1 downto 0)); 

tages: if ((i rem 2)=0) and (i/=num_stages) generate 

add_g=>add_g,mult_g=>mult_g, 
 twiddle_width=>twiddle_width, 

*(num_stages - i)) 
  port map ( prvs_r=>stoscon_r(i-1)(input_width + 

-1)/2)*mult_g)-1-add_g downto 0), 
_width 

   

tonext_r=>stoscon_r(i)(input_width 
lt_g)+mult_g-1 downto 0), 

 tonext_i=>stoscon_i(i)(input_width 
(i*add_g) + (((i-1)/2)*mult_g)+mult_g-1 downto 0)); 

   

rom_1 : component rom1 

0)); 
end component;  
 
begin 
controller : com
 
 port map ( clock=>clock,resetn=>resetn,load_enable=>load_enable, 
    countout=>control); 
stages : for i in 1 to num_stages generate 
-- constan ity : in r :=i rem 2; 
-- constant shift_stages : integer := 2**(num_stages - i); 
-- consta
-- constant data_width : integer :=input_width + (i*add_g) + (((i-
1)/2)*mult_g); 
-- constant s: integer :
-- constant t
 
  init
   generic map (data_width=>input_width + (i*add_g) 
(((i-1)/2)*mult_g),  
  
shift_stages=>2**(num_stages - i)) 
  
 prvs_r=>xin_r,prvs_i=>xin_i,s=>control((num_stages-
i)),clock=>clock,resetn=>resetn
     
+ (i*add_g) + ((

   
+ (i*add_g) + ((
 end generate initial_stage; 
  
 even_s
  inner_stage_II : component stage_II 
   generic map (data_width=>input_width + (i*add_g) + 
(((i-1)/2)*mult_g), 
      
     
shift_stages=>2*
 
(i*add_g) + (((i
      prvs_i=>stoscon_i(i-1)(input
+ (i*add_g) + (((i-1)/2)*mult_g)-1-add_g downto 0), 
      t=>control((num_stages-
i+1)),s=>control((num_stages-i)),clock=>clock,resetn=>resetn, 
  
 fromrom_r=>rtoscon_r(i/2),fromrom_i=>rtoscon_i(i/2), 
      
+ (i*add_g) + (((i-1)/2)*mu

     
+ 
    
  first_rom: if (i/2)=1 generate 
   

73 



    generic map (data_width=>twiddle_width, 
address_width=>(num_stages-i+1)+1) 
 
wn

   port map ( address=>control((num_stages-i+1) 
to ), 

generate first_rom; 

 second_rom: if (i/2)=2 generate 
rom_2 : component rom2 

generic map (data_width=>twiddle_width, 
stages-i+1)+1) 

) 
 

    

=>twiddle_width, 

     

d ge rate third_rom;  

rom_4 : component rom4 
   generic map (data_width=>twiddle_width, 

es-i+1)+1) 
ages-i+1) 

datar=>rtoscon_r(i/2),datai=>rtoscon_i(i/2)); 
ge

generate 
r_ age_I : component stage_I 

d_g) + (((i-1)/2)*mult_g)-1-add_g downto 0), 
_width 

+ (((i-1)/2)*mult_g)-1-add_g downto 0), 
(num_stages-

do  0
      
 datar=>rtoscon_r(i/2),datai=>rtoscon_i(i/2)); 
  end 
   
 
   
    
address_width=>(num_
    port map ( address=>control((num_stages-i+1
downto 0),
      
 datar=>rtoscon_r(i/2),datai=>rtoscon_i(i/2)); 
  end generate second_rom; 
 
  third_rom: if (i/2)=3 generate 
   rom_3 : component rom3 
    generic map (data_width
address_width=>(num_stages-i+1)+1) 
    port map ( address=>control((num_stages-i+1) 
downto 0), 
 
 datar=>rtoscon_r(i/2),datai=>rtoscon_i(i/2)); 
  en ne
     
  fourth_rom: if (i/2)=4 generate 
   
 
address_width=>(num_stag
    port map ( address=>control((num_st
downto 0), 
      
 
  end nerate fourth_rom; 
      
 end generate even_stages; 
  
 odd_stages: if (((i rem 2)=1) and (i/=num_stages)) and (i/=1)
 
  inne st

  generic map (data_width=>input_width + (i*add_g) +  
(((i-1)/2)*mult_g),  
      add_g=>add_g, 
shift_stages=>2**(num_stages - i)) 
   port map ( prvs_r=>stoscon_r(i-1)(input_width + 
(i*ad
      prvs_i=>stoscon_i(i-1)(input
+ (i*add_g) 
      s=>control(
i)),clock=>clock,resetn=>resetn, 

74 



      tonext_r=>stoscon_r(i)(input_width 
+ (i*add_g) + ( -
    
(i*add_g) + ( -

((i 1)/2)*mult_g)-1 downto 0), 
  tonext_i=>stoscon_i(i)(input_width 

((i 1)/2)*mult_g)-1 downto 0)); 

d ((i rem 2)=0) generate 

idth + (i*add_g) + 

th + 

i=>stoscon_i(i-1)(input_width 

   t=>control((num_stages-
), ,resetn=>resetn, 

out_r,tonext_i=>Xout_i); 

_I : component stage_I_last 
 (i*add_g) + 

s_r=>stoscon_r(i-1)(input_width + 

(num_stages-

ut_r,tonext_i=>Xout_i); 
      

+ 
 end generate odd_stages; 
  
 end_on_even: if (i=num_stages) an
  last_stage_II : component stage_II_last 
   generic map (data_width=>input_w
(((i-1)/2)*mult_g), add_g=>add_g) 
   port map ( prvs_r=>stoscon_r(i-1)(input_wid
(i*add_g) + (((i-1)/2)*mult_g)-1-add_g downto 0), 
      prvs_
+ (i*add_g) + (((i-1)/2)*mult_g)-1-add_g downto 0), 
   
i+1) s=>control((num_stages-i)),clock=>clock
      tonext_r=>X
 end generate end_on_even; 
  
 end_on_odd: if (i=num_stages) and ((i rem 2)=1) generate 
  last_stage
   generic map (data_width=>input_width +
(((i-1)/2)*mult_g), add_g=>add_g) 
   port map ( prv
(i*add_g) + (((i-1)/2)*mult_g)-1-add_g downto 0), 
      prvs_i=>stoscon_i(i-1)(input_width 
+ (i*add_g) + (((i-1)/2)*mult_g)-1-add_g downto 0), 
      s=>control(
i)),clock=>clock,resetn=>resetn, 
      tonext_r=>Xo
      

     
 end generate end_on_odd; 
  
end generate stages; 
end; 
 

counterhle.vhd 
--Counter with resetn and load enable 
--When load enable is high, it counts. 
--When load enable is low, it stops counting. 
--When a reset is triggered, it resets to zero. 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_arith.ALL; 
 
entity counterhle is 
 generic ( width: integer :=3); 
 port (  clock : in std_logic; 
   resetn : in std_logic; 
   load_enable : in std_logic; 

75 



   countout : out std_logic_vector(width-1 downto 0); 
   hle : out std_logic 
    ); 
end counterhle; 
 
architecture behavior of counterhle is 
signal count : std_logic_vector(width-1 downto 0); 

gin 

') then 
e='1') then 

ount) + '1'; 

0'); 

able <= load_enable; 

; 

 data_width-add_g 

1, if 0 then 

ster stages 

ogic; 

signal hold_load_enable : std_logic; 
be
process(clock) 
begin 
 if (resetn='0')then 
    count <= (others => '0'); 
    hold_load_enable <='0'; 
 elsif (clock'event and clock='1
   if (load_enable = '1' or hold_load_enabl
       count <= unsigned(c
   else  
    count <= (others =>'
   end if; 
   if (unsigned(count)+'1')=0 then 
    hold_load_en
   end if; 
 end if
end process; 
countout <= count; 
hle <=hold_load_enable; 
end; 
 

stage_I.vhd 
--Component for Stages using BF2I (first and every odd stage) 
--Doesn't handle last stage 
--Input is a standard logic vector of
--data_width - width of the internal busses 

_width grows by --add_g - Add growth variable - if 1, data
0 
-shif  regi- t_stages - number of shift
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
 
entity stage_I is 
generic ( data_width : INTEGER :=13; 
   add_g : INTEGER := 1; 
   shift_stages : INTEGER := 32 
  ); 
port ( prvs_r :in std_logic_vector(data_width-1-add_g downto 0); 
   prvs_i :in std_logic_vector(data_width-1-add_g downto 
0); 
   s :in std_logic; 
   clock : in std_l

76 



   resetn : in std_logic; 
   tonext_r :out std_logic_vector(data_width-1 downto 
0);   
   tonext_i :out std_logic_vector(data_width-1 downto 0)  
  ); 
end stage_I; 
 
architecture structure of stage_I is 
signal toreg_r : std_logic_vector(data_width-1 downto 0); 
signal toreg_i : std_logic_vector(data_width-1 downto 0); 

wnto 0); 

T    std_logic_vector (data_width-1 

th-1 
WNTO ); 

h-1 downto 

_logic_vector(data_width-add_g-1 downto 

_i :in std_logic_vector(data_width-add_g-1 downto 

  s : in std_logic; 
toreg_r :out std_logic_vector(data_width-1 downto 0); 

c_vector(data_width-1 downto 0);  
c_vector(data_width-1 downto 

data_width-1 downto 0)  

a_width=>data_width, n=>shift_stages) 
>fromreg_r, 

stages) 

signal fromreg_r : std_logic_vector(data_width-1 downto 0); 
signal fromreg_i : std_logic_vector(data_width-1 do
 
component shiftregN 
 generic (data_width : integer; 
   n : integer); 
 port (clock : IN std_logic; 
        read_data  : OU
DOWNTO 0); 
        write_data : IN     std_logic_vector (data_wid
DO  0
        resetn     : IN     std_logic 
      ); 
end component; 
 
component BF2I 
 generic (data_width : INTEGER; 
   add_g: INTEGER); 
 port   (fromreg_r :in std_logic_vector(data_widt
0); 
   fromreg_i :in std_logic_vector(data_width-1 downto 
0); 
   prvs_r :in std
0); 
   prvs
0); 
 
   
  
   toreg_i :out std_logi
   tonext_r :out std_logi
0);   
   tonext_i :out std_logic_vector(

  );  
end component; 
 
begin 
gr : shiftregN re

 generic map (dat
cl port map ( ock=>clock, read_data=

write_data=>toreg_r, resetn=>resetn); 
regi : shiftregN 
 generic map (data_width=>data_width, n=>shift_

77 



 port map (clock=>clock, read_data=>fromreg_i, 
write_data=>toreg_i, resetn=>resetn); 
btrfly : BF2I 

 (data_wi generic map dth=>data_width, add_g=>add_g) 

prvs_i=>prvs_i, 

_r, toreg_i=>toreg_i, 
  tonext_r=>tonext_r, tonext_i=>tonext_i); 

Comp the last stage) 

 1, if 0 then 

is 
dth : INTEGER :=13; 
 INTEGER := 1 

 ); 
ort ( prvs_r :in std_logic_vector(data_width-1-add_g downto 0); 

 prvs_i :in std_logic_vector(data_width-1-add_g downto 

std_logic; 

idth-1 downto 

  tonext_i :out std_logic_vector(data_width-1 downto 0)  

d stage_I_last; 

e_I_last is 
or(data_width-1 downto 0); 

gnal toreg_i : std_logic_vector(data_width-1 downto 0); 
std_logic_vector(data_width-1 downto 0); 

omr i : -1 downto 0); 

idth : integer); 
t 

_logic_vector (data_width-1 

 port map ( fromreg_r=>fromreg_r, fromreg_i=>fromreg_i, 
    prvs_r=>prvs_r, 
    s=>s, 
    toreg_r=>toreg
  
end; 
 

stage_I_last.vhd 
-- onent for Stages using BF2I (if BF2I is 
--Input is a standard logic vector of data_width-add_g 
--data_width - width of the internal busses 

 - if 1, data_width grows by--add_g - Add growth variable
0 
--Only 1 shift stage 
 
library IEEE; 
use IEEE.std_logic_1164.all; 

arith.all; use ieee.std_logic_
 
entity stage_I_last 
generic ( data_wi

  add_g : 
 
p
  
0); 
   s :in std_logic; 
   clock : in 
   resetn : in std_logic; 

tor(data_w   tonext_r :out std_logic_vec
0);   
 
  ); 
en
 
architecture structure of stag
signal toreg_r : std_logic_vect
si
signal fromreg_r : 
signal fr eg_  std_logic_vector(data_width
 
component shiftreg1 
 generic (data_w
 por (clock : IN std_logic; 
        read_data  : OUT    std_logic_vector (data_width-1 
DOWNTO 0); 
        write_data : IN     std
DOWNTO 0); 

78 



        resetn     : IN     std_logic 

(data_width : INTEGER; 
  add_g: INTEGER); 

th-1 downto 

-1 downto 

g-1 downto 
; 

downto 
; 

_logic; 
); 

 toreg_i :out std_logic_vector(data_width-1 downto 0);  

 
data_width-1 downto 0)  

) 

_data=>toreg_r, resetn=>resetn); 

_data=>toreg_i, resetn=>resetn); 

generic map (data_width=>data_width, add_g=>add_g) 
omreg_i=>fromreg_i, 

 s=>s, 

Stages using BF2II (second and every even stage) 
't handle last stage 

ard logic vector of data_width-add_g 

add_ if 0 then 

ange from 0 to twiddle_width+1 

      ); 
end component; 
 
component BF2I 
 generic 
 
 port   (fromreg_r :in std_logic_vector(data_wid
0); 
   fromreg_i :in std_logic_vector(data_width
0); 
   prvs_r :in std_logic_vector(data_width-add_
0)
   prvs_i :in std_logic_vector(data_width-add_g-1 
0)
   s : in std
   toreg_r :out std_logic_vector(data_width-1 downto 0
  
  
   tonext_r :out std_logic_vector(data_width-1 downto 
0);  
   tonext_i :out std_logic_vector(
   ); 
end component; 
 
begin 
regr : shiftreg1 
 generic map (data_width=>data_width
 port map (clock=>clock, read_data=>fromreg_r, 
write
regi : shiftreg1 
 generic map (data_width=>data_width) 
 port map (clock=>clock, read_data=>fromreg_i, 
write
btrfly : BF2I 
 
 port map ( fromreg_r=>fromreg_r, fr
    prvs_r=>prvs_r, prvs_i=>prvs_i, 
   
    toreg_r=>toreg_r, toreg_i=>toreg_i, 
    tonext_r=>tonext_r, tonext_i=>tonext_i); 
end; 
 
stage_II.vhd 
--Component for 
--Doesn
--Input is a stand
--data_width - width of the internal busses 

ws by 1, -- g - Add growth variable - if 1, data_width gro
0 

rowth variable - can r--mult_g - mult g
--twiddle_width - width of the twiddle factor input 
--shift_stages - number of shift register stages 

79 



 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
 
entity stage_II is 
generic ( data_width : INTEGER :=14; 
   add_g : INTEGER := 1; 
   mult_g : INTEGER :=9; 

  twiddle_width : INTEGER :=10; 
shift_stages : INTEGER := 16 

 

to 0); 
-1-add_g downto 

n std_logic; 
k : in std_logic; 

resetn : in std_logic; 
n std_logic_vector(twiddle_width-1 downto 

 std_logic_vector(twiddle_width-1 downto 

or(data_width+mult_g-1 
; 

c_vector(data_width+mult_g-1 

downto 0); 

_logic_vector(data_width-1 downto 0); 

width-1 

te_data : IN     std_logic_vector (data_width-1 

td_logic 

 

I 
c (data_width : INTEGER; 

 
   
  );
   

d_g downport ( prvs_r :in std_logic_vector(data_width-1-ad
r(data_width   prvs_i :in std_logic_vecto

0); 
   t :in std_logic; 
   s :i

  cloc 
   
   fromrom_r :i
0); 

  fromrom_i :in 
0); 
   tonext_r :out std_logic_vect
ownto 0)d    

next_i :out std_logi   to
o ) downt  0  

  ); 
end stage_II; 
 
architecture structure of stage_II is 
signal toreg_r : std_logic_vector(data_width-1 
signal toreg_i : std_logic_vector(data_width-1 downto 0); 
signal fromreg_r : std_logic_vector(data_width-1 downto 0); 
signal fromreg_i : std_logic_vector(data_width-1 downto 0); 

d_logic_vector(data_width-1 downto 0); signal tomult_r : st
stdsignal tomult_i : 

 
component shiftregN 
 generic (data_width : integer; 
   n : integer); 
 port (clock : IN std_logic; 
        read_data  : OUT    std_logic_vector (data_
WNTO 0); DO

        wri
DOWNTO 0); 

   s        resetn     : IN  
      ); 
end component;
 
component BF2I
 generi

80 



   add_g: INTEGER); 
 port   (fromreg_r :in std_logic_vector(data_width-1 downto 

fromreg_i :in std_logic_vector(data_width-1 downto 

_vector(data_width-add_g-1 downto 

 

 

  tonext_r :out std_logic_vector(data_width-1 downto 

); 
d co onen  

tw e_mult 

: INTEGER; 
ut_width : INTEGER); 

port (data_r :in std_logic_vector(mult_width-1 downto 0); 
data_i :in std_logic_vector(mult_width-1 downto 0); 
twdl_r :in std_logic_vector(twiddle_width-1 downto 

; 
_width-1 downto 

out_r :out std_logic_vector(output_width-1 downto 0); 

width-1 downto 0) 

gin 

width, n=>shift_stages) 

 shiftregN 
generic map (data_width=>data_width, n=>shift_stages) 

map (clock=>clock, read_data=>fromreg_i, 

 
eg_i, 

0); 
   

0); 
   prvs_r :in std_logic
0); 
   prvs_i :in std_logic_vector(data_width-add_g-1 downto
0); 
   t : in std_logic; 
   s : in std_logic; 
   toreg_r :out std_logic_vector(data_width-1 downto 0); 
 
   toreg_i :out std_logic_vector(data_width-1 downto 0);  
 
0);   
   tonext_i :out std_logic_vector(data_width-1 downto 0)  
   
en mp t;
 
component iddl
 generic (mult_width : INTEGER; 
   twiddle_width 
      outp
 
   
   
0)
   twdl_i :in std_logic_vector(twiddle
0); 
   
  
   out_i :out std_logic_vector(output_
   ); 
end component; 
 
be
regr : shiftregN 
 generic map (data_width=>data_
 port map (clock=>clock, read_data=>fromreg_r, 
write_data=>toreg_r, resetn=>resetn); 
regi :
 
 port 
write_data=>toreg_i, resetn=>resetn); 
btrfly : BF2II 
 generic map (data_width=>data_width, add_g=>add_g)

reg_i=>fromr port map ( fromreg_r=>fromreg_r, from
    prvs_r=>prvs_r, prvs_i=>prvs_i, 
    t=>t, s=>s, 
    toreg_r=>toreg_r, toreg_i=>toreg_i, 

=>tomult_i);     tonext_r=>tomult_r, tonext_i
twiddle : twiddle_mult 

81 



 generic map (mult_width=>data_width, 
>twiddle_width,  

 output_width=> data_width+mult_g) 
lt_r, data_i=>tomult_i, 
>fromrom_r, twdl_i=>fromrom_i, 

   out_r=>tonext_r, out_i=>tonext_i); 

st.v

lier after it 
-add_g 

of the internal busses 

std_logic; 
std_logic; 

clock : in std_logic; 
; 

-1 downto 

 downto 0)  

logic_vector(data_width-1 downto 0); 
_width-1 downto 0); 

gnal ta_width-1 downto 0); 
gnal data_width-1 downto 0); 

ector (data_width-1 
); 

e_data : IN     std_logic_vector (data_width-1 

resetn     : IN     std_logic 

twiddle_width=
   
 port map ( data_r=>tomu
    twdl_r=
 
end; 
 

age_I la  st I_ hd
--Component for Stages using BF2II (last stage only) 
-When BF2II is th  multip-   e last butterfly, there is no

d logic vector of data_width--Input is a standar
th --data_width - wid

_ - Ad--add g d growth variable - if 1, data_width grows by 1, if 0 then 
0 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
 
entity stage_II_last is 
generic ( data_width : INTEGER :=14; 
   add_g : INTEGER := 1 
  ); 
   
port ( prvs_r :in std_logic_vector(data_width-1-add_g downto 0); 
   prvs_i :in std_logic_vector(data_width-1-add_g downto 
0); 
   t :in 

s :in    
   

   resetn : in std_logic
   tonext_r :out std_logic_vector(data_width
0);   
   tonext_i :out std_logic_vector(data_width-1
  ); 
end stage_II_last; 
 
chitecture structure of stage_II_last is ar

signal toreg_r : std_
ignals  toreg_i : std_logic_vector(data

fromr c_vector(dasi  eg_r : std_logi
si  fromreg_i : std_logic_vector(
 
component shiftreg1 
 generic (data_width : integer); 
 port (clock : IN std_logic; 
        read_data  : OUT    std_logic_v

TODOWN  0
writ        

WNTO 0); DO
        
      ); 

82 



end component; 
 
component BF2II 

tor(data_width-add_g-1 downto 

toreg_r :out std_logic_vector(data_width-1 downto 0); 

out std_logic_vector(data_width-1 downto 0);  
tonext_r :out std_logic_vector(data_width-1 downto 

_i :out std_logic_vector(data_width-1 downto 0)  

gin 

port map (clock=>clock, read_data=>fromreg_r, 

: shiftreg1 

p (cl

dth=>data_width, add_g=>add_g) 
port map ( fromreg_r=>fromreg_r, fromreg_i=>fromreg_i, 

  prvs_r=>prvs_r, prvs_i=>prvs_i, 
 t=>t, s=>s, 

>tonext_i); 

 INTEGER :=13; 

 generic (data_width : INTEGER; 
   add_g: INTEGER); 
 port   (fromreg_r :in std_logic_vector(data_width-1 downto 
0); 
   fromreg_i :in std_logic_vector(data_width-1 downto 
0); 
   prvs_r :in std_logic_vec
0); 
   prvs_i :in std_logic_vector(data_width-add_g-1 downto 
0); 
   t : in std_logic; 
   s : in std_logic; 
   
  
   toreg_i :
   
0);   
   tonext
   ); 
end component; 
 
be
re  s regr : hift g1 
 generic map (data_width=>data_width) 
 
write_data=>toreg_r, resetn=>resetn); 
regi 
 generic map (data_width=>data_width) 
 port ma ock=>clock, read_data=>fromreg_i, 
write_data=>toreg_i, resetn=>resetn); 
btrfly : BF2II 

p (data_wi generic ma
 
  
   
    toreg_r=>toreg_r, toreg_i=>toreg_i, 
    tonext_r=>tonext_r, tonext_i=
end; 
 
BF2I.vhd 
--Butterfly stage type 1 
--7/17/02  
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
 
entity BF2I is 
 
generic (   data_width :

83 



   add_g : INTEGER :=1 
        ); 
 

idth-1 dport   (  fromreg_r :in std_logic_vector(data_w ownto 

nto 

  prvs_r :in std_logic_vector(data_width-1-add_g downto 

th-1-add_g downto 

th-1 downto 0); 

 
  tonext_r :out std_logic_vector(data_width-1 downto 

t std_logic_vector(data_width-1 downto 0)  

a_width-1 downto 0); 
td_logic_vector(data_width-1 downto 0); 

idth downto 0); 

0); 
0); 

t std_logic_vector(data_width downto 0)   

(dat

idth-1 downto 0); 
 in std_logic_vector(data_width downto 0);  

0); 
   fromreg_i :in std_logic_vector(data_width-1 dow
0); 
 
0); 
   prvs_i :in std_logic_vector(data_wid
0); 
   s : in std_logic; 

tor(data_wid   toreg_r :out std_logic_vec
  
   toreg_i :out std_logic_vector(data_width-1 downto 0); 
 
0);   
   tonext_i :ou
  ); 
 
end BF2I; 
 
architecture behavior of  BF2I is 

std_logic_vector(datsignal prvs_ext_r : 
: ssignal prvs_ext_i 

signal add1_out : std_logic_vector(data_width downto 0); 
signal add2_out : std_logic_vector(data_width downto 0); 
signal sub1_out : std_logic_vector(data_width downto 0); 
signal sub2_out : std_logic_vector(data_w
 
component adder 
 generic (inst_width:integer); 
        port( 
             inst_A : in std_logic_vector(data_width-1 downto 0); 
             inst_B : in std_logic_vector(data_width-1 downto 0); 

ut std_logic_vector(data_width downto 0)                 SUM : o
             ); 
d component; en

 
component subtract 
 generic (inst_width:integer); 
        port( 
            inst_A : in std_logic_vector(data_width-1 downto 
          inst_B : in std_logic_vector(data_width-1 downto   

            DIFF : ou
            ); 
end component; 
 
component mux2_mmw 
 generic a_width:integer); 
  port(  
   s : in std_logic; 

: in std_logic_vector(data_w      in0
   in1:

84 



    data: out std_logic_vector(data_width-1 downto 0) 
); 

add1 : adder 

port map (inst_A=>prvs_ext_r, inst_B=>fromreg_r, SUM=>add1_out); 

port map (inst_A=>prvs_ext_i, inst_B=>fromreg_i, SUM=>add2_out); 

p (in

ri p 

x2_mmw 
generic map (data_width=>data_width) 

 data=>tonext_i); 

in1=>sub1_out, data=>toreg_r);  

reg_i);  

 prvs_ext_r <= prvs_r(data_width-2) &  prvs_r;  
prvs_ext_i <= prvs_i(data_width-2) &  prvs_i;  

prvs_r; 
prvs_ext_i <= prvs_i; 

      
end component; 
 
begin 
 
 
 generic map (inst_width=>data_width) 
 
  
 add2 : adder 
 generic map (inst_width=>data_width) 
 
  
 sub1 : subtract 
 generic map (inst_width=>data_width) 
 port ma st_A=>fromreg_r, inst_B=>prvs_ext_r, DIFF=>sub1_out); 
  
 sub2 : subtract 
 gene c ma (inst_width=>data_width) 
 port map (inst_A=>fromreg_i, inst_B=>prvs_ext_i, DIFF=>sub2_out); 
  
 mux_1 : mu
 
 port map (s=>s, in0=>fromreg_r, in1=>add1_out, data=>tonext_r); 
  
 mux_2 : mux2_mmw 
 generic map (data_width=>data_width) 
 port map (s=>s, in0=>fromreg_i, in1=>add2_out,
   
 mux_3 : mux2_mmw 
 generic map (data_width=>data_width) 
 port map (s=>s, in0=>prvs_ext_r, 
   
 mux_4 : mux2_mmw 
 generic map (data_width=>data_width) 
 port map (s=>s, in0=>prvs_ext_i, in1=>sub2_out, data=>to
 
process(prvs_r, prvs_i)  
begin  

if add_g=1 then  
 
  
 else 

prvs_ext_r <=   
  

 end if; 
end process; 
 
d; en

 

 

85 



BF2II.vhd 
--Butterfly stage type 2 

2  

 prvs_r :in std_logic_vector(data_width-1-add_g downto 

gic_vector(data_width-1-add_g downto 

-1 downto 0); 

-1 downto 0);  
h-1 downto 

vector(data_width-1 downto 0)  

 : std_logic_vector(data_width-1 downto 0); 
i : std_logic_vector(data_width-1 downto 0); 

d_logic_vector(data_width downto 0); 
dth downto 0); 
dth downto 0); 

 
nst_width:integer); 

data_width-1 downto 0); 
data_width-1 downto 0); 
ta_width downto 0)    

o onen  

--7/17/0
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
 
entity BF2II is 
 
generic (   data_width : INTEGER :=13; 
   add_g: INTEGER :=1 
      );   
 
port   (  fromreg_r :in std_logic_vector(data_width-1 downto 
); 0

omreg_i :in std_logic_vector(data_width-1 downto    fr
; 0)

  
; 0)

   prvs_i :in std_lo
0); 
   t : in std_logic; 
   s : in std_logic; 
   toreg_r :out std_logic_vector(data_width
  
   toreg_i :out std_logic_vector(data_width

  tonext_r :out std_logic_vector(data_widt 
0);   
   tonext_i :out std_logic_

   );
 
end BF2II; 
 

avior of  BF2II is architecture beh
_rsignal prvs_ext

gnal prvs_ext_si
signal add1_out : st
signal add2_out : std_logic_vector(data_wi

t : std_logic_vector(data_wisignal sub1_ou
signal sub2_out : std_logic_vector(data_width downto 0); 
signal swapadd : std_logic_vector(data_width downto 0); 
signal swapsub : std_logic_vector(data_width downto 0); 
 
component  adder

generic (i 
        port( 
             inst_A : in std_logic_vector(

 std_logic_vector(             inst_B : in
             SUM : out std_logic_vector(da

       );       
nd ce mp t;

86 



 
component subtract 
 generic (i
      port( 

nst_width:integer); 

     inst_A : in std_logic_vector(data_width-1 downto 0); 
          inst_B : in std_logic_vector(data_width-1 downto 0); 
    ut std_logic_vector(data_width downto 0)   

in std_logic; 
  in std_logic_vector(data_width-1 downto 0); 

ata_width downto 0);  

); 

gin 

 

 

neric map (data_width=>data_width) 
n0=>fromreg_r, in1=>add1_out, data=>tonext_r); 

1=>swapadd, data=>tonext_i); 

map (data_width=>data_width) 
port map (s=>s, in0=>prvs_ext_r, in1=>sub1_out, data=>toreg_r);  
  
mux_4 : mux2_mmw 
generic map (data_width=>data_width) 
port map (s=>s, in0=>prvs_ext_i, in1=>swapsub, data=>toreg_i); 

  

  
       
  
        DIFF : o
            ); 
end component; 
 
component mux2_mmw 
 generic (data_width:integer); 
  port(  
   s : 
    in0: 
   in1: in std_logic_vector(d
    data: out std_logic_vector(data_width-1 downto 0) 
      
end component; 
 
be
 
 add1 : adder 
 generic map (inst_width=>data_width) 
 port map (inst_A=>prvs_ext_r, inst_B=>fromreg_r, SUM=>add1_out); 
  
 add2 : adder 
 generic map (inst_width=>data_width) 
 port map (inst_A=>prvs_ext_i, inst_B=>fromreg_i, SUM=>add2_out); 
  
 sub1 : subtract 
 generic map (inst_width=>data_width) 
 port map (inst_A=>fromreg_r, inst_B=>prvs_ext_r, DIFF=>sub1_out);
  
 sub2 : subtract 
 generic map (inst_width=>data_width) 
 port map (inst_A=>fromreg_i, inst_B=>prvs_ext_i, DIFF=>sub2_out);

  
 mux_1 : mux2_mmw 
 ge
 port map (s=>s, i
  
 mux_2 : mux2_mmw 

 (data_width=>data_width)  generic map
 port map (s=>s, in0=>fromreg_i, in
   

mw  mux_3 : mux2_m
 generic 
 
 
 
 
 

87 



 
process(prvs_r,prvs_i,s,t) 

_g=1 then 
(t='0' and s='1') then 

= prvs_i(data_width-2) & prvs_i; 
= prvs_r(data_width-2) & prvs_r; 

 prvs_r(data_width-2) & prvs_r; 
prvs_ext_i <= prvs_i(data_width-2) & prvs_i; 

 

 prvs_ext_i <= prvs_r; 

if

hd 

le_width : INTEGER :=3; 
ut_width : INTEGER :=9 

begin 
if add 

  if 
   prvs_ext_r <
   prvs_ext_i <
  else 

  prvs_ext_r <= 
   

 end if;  
 else 
  if (t='0' and s='1') then 

 prvs_ext_r <= prvs_i;   
  

  else 
   prvs_ext_r <= prvs_r; 
   prvs_ext_i <= prvs_i; 
  end if;  
 end if;   
end process; 
 
process(add2_out, sub2_out, s, t) 
begin 
 if (t='0' and s='1') then 
  swapadd<=sub2_out; 
  swapsub<=add2_out; 

lse  e
  swapadd<=add2_out; 
  swapsub<=sub2_out; 

nd   e ;
end process; 
d; en

 
iddle_mult.vtw

--Twiddle multiplier 
--7/17/02  
--Uses a both inputs same width complex multiplier 
--Won't sign extend output, but will truncate it down 
--(mult_width + twiddle_width >= output_width) 
-- 
--Twiddle factors are limited to -1 < twdl < 1. 
--(twiddle factor can't be 0b1000000000) 
 
brary IEEE; li

use IEEE.std_logic_1164.all; 
 

mult is entity twiddle_
 
generic (    
  mult_width : INTEGER := 7; 
  twidd
      outp

88 



        ); 

tor(mult_width-1 downto 0); 

to 

wnto 

out_r :out std_logic_vector(output_width-1 downto 0); 
 

ctor(output_width-1 downto 0)  

al ult_ t_r o 

i : std_logic_vector(twiddle_width + mult_width downto 

mponent comp_mult 

 

: in std_logic_vector(inst_width1-1 downto 0);  
 in std_logic_vector(inst_width2-1 downto 0);  

t_width2-1 downto 0); 

t std_logic_vector(inst_width1 + inst_width2 

; 

a_r, Im1=>data_i, Re2=>twdl_r, Im2=>twdl_i, 

out_r,mult_out_i) 

width+mult_width-1) downto 

 
widd h-output_width)); 

 
port   (  data_r :in std_logic_vec

data_i :in std_logic_vector(mult_width-1 downto 0);    
   twdl_r :in std_logic_vector(twiddle_width-1 down
0); 
   twdl_i :in std_logic_vector(twiddle_width-1 do
0); 
   
 
   out_i :out std_logic_ve
  ); 
 
end twiddle_mult; 
 
architecture behavior of  twiddle_mult is 
sig  m ou : std_logic_vector(twiddle_width + mult_width downtn
0); 
signal mult_out_
0); 
 
co
 generic ( inst_width1:integer; 
   inst_width2:integer );
 port  ( Re1  : in std_logic_vector(inst_width1-1 downto 0); 
         Im1  
         Re2  :
         Im2  : in std_logic_vector(ins
         Re   : out std_logic_vector(inst_width1 + inst_width2 
downto 0); 
         Im   : ou
downto 0)  
 
  )
    
end component; 
 
begin 
 
 U1 : comp_mult 
 generic map( 
  inst_width1 => mult_width, inst_width2 => twiddle_width) 
 port map (Re1=>dat
Re=>mult_out_r, Im=>mult_out_i); 
 
 process(mult_
  begin 
     out_r <= mult_out_r((twiddle_
(twiddle_width+mult_width-output_width)); 

i <= mult_out_i((twiddle_width+mult_width-1) downto     out_
(t le_width+mult_widt
 
  end process; 
end; 

89 



shiftregN.vhd 

r, data_width bits wide. 

BRAR ieee

ta_width-1 DOWNTO 0); 
ta_width-1 DOWNTO 0); 

ogic 

 
width-1 downto 0); 
 <>) of reg; 

: regArray(1 to n-1); 

s(Clock, resetn) 
eger; 

then 
for i in 1 to  (n-1) loop 

; 
  

 end loop; 

_data; 
  for i in 2 to n-1 loop 

 registerFile(i) <= registerFile(i-1); 

  read_data <= registerFile(n-1);    

end if; 

-- hds
-n st

 header_start 
- age shift registe
 

 LI Y ;
USE ieee.std_logic_1164.ALL; 

th.ALL; USE ieee.std_logic_ari
 
 
ENTITY shiftregN IS 
   GENERIC(  
      data_width : integer := 25; 
      n  : integer := 4 
   ); 
   PORT(  
      clock      : IN     std_logic; 
      read_data  : OUT    std_logic_vector (da

logic_vector (da      write_data : IN     std_
      resetn     : IN     std_l
   ); 
 
-- Declarations 
 
END shiftregN ; 
 
-- hds interface_end 

avior OF shiftregN ISARCHITECTURE beh
subtype reg is std_logic_vector(data_
type regArray is array (integer range
 

erFile signal regist
 BEGIN

ocespr
variable i: int
begin 
 if (resetn='0') 
  
   registerFile(i) <= (others => '0')
   read_data <= (others => '0');   
   
 
 elsif (Clock'event and Clock='1') then 
   registerFile(1) <= write
 
   
   end loop; 
 
    
 
end process; 
 
END behavior; 
 

90 



shiftreg1.vhd 
-- hds header_start 
--1 stage shift register, data_width bits wide. 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_arith.ALL; 
 
 
ENTITY shiftreg1 IS 
   GENERIC(  
    data_width : in  teger := 25 

GIN 

if (resetn='0') then 
 i in data_width-1 downto 0 loop 

eg00(i)<='0'; 
ead_data <= (others => '0'); 

end loop; 
else 

_data<=reg00; 
ta  <= write_data;     

bits 
 input 

   ); 
 PORT(    

      clock      : IN     std_logic; 
      read_data  : OUT    std_logic_vector (data_width-1 DOWNTO 0); 
      write_data : IN     std_logic_vector (data_width-1 DOWNTO 0); 
      resetn     : IN     std_logic 
   ); 
 
-- Declarations 
 
END shiftreg1 ; 
 
-- hds interface_end 
ARCHITECTURE behavior OF shiftreg1 IS 
--signal reg00 : std_logic_vector(data_width-1 downto 0); 
BE
process(Clock) 
egin b
 if (Clock'event and Clock='1') then 

  
--   for
--    r

 r   
   --

  
   reg00<=write_data; --

--   read
   read_da
  
  end if; 
 end if; 
d process; en

END behavior; 
 

ux2_mmw.vhm d 
--Special 2 to 1 mux (mismatched width) 
--7/17/02 
First input is data_width bits --

--Second input is data_width+1 
ores highest bit of second--Ign

91 



 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
E ieee.std_logic_arith.ALL; US

 
 
ENTITY mux2_mmw IS 
 GENERIC( data_width : intege  r := 35 
    ); 

 in std_logic; 
: in std_logic_vector(data_width-1 downto 0); 

_vector(data_width downto 0);  
ic_vector(data_width-1 downto 0) 

w ; 

en 
=in0; 

=in1(data_width-1 downto 0); 

have the same number of 
nal bits, 

truncate. 

 IEEE; 
 

TEGER := 14; 

td_logic_vector(inst_width1 + inst_width2 downto 

: out std_logic_vector(inst_width1 + inst_width2 downto 0)  

 

  
   PORT ( s :

in0      
   in1: in std_logic

std_log    data: out 
  );     

END mux2_mm
 
-- hds interface_end 
ARCHITECTURE behavior OF mux2_mmw IS 
BEGIN 

s(in0,in1,s) proces
gin be

 if s='0' th
 data< 

 else 
 data< 

 end if; 
end process; 
END behavior; 
 

mp_mult.vhd co
--Since both the real and imaginary values 
fractio
--  there is no need to 
 
library
e IEus EE.std_logic_1164.all;

use ieee.std_logic_arith.all; 
 
entity comp_mult is 
 
generic (   inst_width1 : IN
     inst_width2 : INTEGER := 14  
        ); 
 
port  ( Re1  : in std_logic_vector(inst_width1-1 downto 0); 
        Im1  : in std_logic_vector(inst_width1-1 downto 0);  
        Re2  : in std_logic_vector(inst_width2-1 downto 0);  
        Im2  : in std_logic_vector(inst_width2-1 downto 0); 
        Re   : out s
0); 
      Im     

 
);

92 



 
end comp_mult; 
 
chitecture behavior of  comp_mult is ar

--multiplier outputs 
tor(inst_width1+inst_width2-1 downto 0);-

or(inst_width1+inst_width2-1 downto 0);-
m1*im2 

logic_vector(inst_width1+inst_width2-1 downto 0); 
logic_vector(inst_width1+inst_width2-1 downto 0); 

ector(inst_width-1 downto 0); 
       SUM : out std_logic_vector(inst_width downto 0)    

t_A : in std_logic_vector(inst_width-1 downto 0); 
t_B : in std_logic_vector(inst_width-1 downto 0); 

st_width downto 0)   

; 

std_logic_vector(inst_width2-1 downto 0); 
 : out 

t_width1+inst_width2-1 downto 0) 
 

inst_width1, 

signal product1 :std_logic_vec
-re1*re2 
gnal product2 :std_logic_vectsi

-i
signal product3 :std_

t4 :std_signal produc
 
 
 
component adder 
 generic (inst_width:integer); 
        port ( 

vector(inst_width-1 downto 0);               inst_A : in std_logic_
        inst_B : in std_logic_v      

       
              ); 
 
end component; 
 
 
component subtract 
 generic (inst_width:integer); 

  port (       
             ins

       ins      
             DIFF : out std_logic_vector(in
             ); 

 co ponen ; end m t
 
 
component multiplier  

dth1:integer generic (inst_wi
  inst_width2:integer 
  ); 
        port ( 
              inst_A : in std_logic_vector(inst_width1-1 downto 0); 
              inst_B : in 

CT_inst              PRODU
tor(insstd_logic_vec

             );
d component; en

 
 
begin 
 
        U1 : multiplier 
      generic map( inst_width1=>
inst_width2=>inst_width2) 

93 



             port map ( inst_A => Re1, inst_B => Re2, PRODUCT_inst => 

    generic map( inst_width1=>inst_width1, 
st_width2=>inst_width2) 

( inst_A => Im1, inst_B => Im2, PRODUCT_inst => 

       ort 

      U4 : multiplier 
nst_width2, 

      port map ( inst_A => Re2, inst_B => Im1, PRODUCT_inst => 

     
inst_width=>inst_width1+inst_width2) 

 map(inst_A => product1, inst_B => product2, DIFF => 

dder 
generic map ( inst_width=>inst_width1+inst_width2)  
ort map ( inst_A => product3, inst_B => product4, SUM => 

 
0); 
); 

nal a_signed, b_signed, sum_signed: SIGNED(inst_width downto 0);   

product1 ); 
           
        U2 : multiplier 
 
in
            port map
product2 ); 
 
        U3 : multiplier 
     generic map( inst_width1=>inst_width1, 
inst_width2=>inst_width2) 
      p map( inst_A => Re1, inst_B => Im2, PRODUCT_inst => 
produ t3c ); 
  
  
     generic map( inst_width1=>i
inst_width2=>inst_width1) 
       
product4); 
 
    U5 : subtract
     generic map ( 
             port
Re ); 
 
        U6 : a
     
           p  

Im ); 
 
end; 
 

der.vhd ad
library IEEE; 
use IEEE.std_logic_1164.all; 
e ieee.std_logic_arith.all; us

 
tity adder is en

      generic ( 
             inst_width : INTEGER := 32

 );            
    port (  

            inst_A : in std_logic_vector(inst_width-1 downto 
            inst_B : in std_logic_vector(inst_width-1 downto 0
            SUM : out std_logic_vector(inst_width downto 0) 
           
            ); 
    end adder; 
 
chitecture oper of adder is ar

 sig

94 



 
begin 
  a_signed <= SIGNED(inst_A(inst_width-1) & inst_A); 

th-1) & inst_B); 

e ieee.std_logic_arith.all; 

s 

 out std_logic_vector(inst_width downto 0) 

  end subtract; 

IGNED(inst_width downto 0);   

ed <= a_signed - b_signed; 
d_logic_vector(diff_signed); 

d oper; 

64.all; 

width2 : INTEGER := 16 

    port ( 
     inst_A : in std_logic_vector(inst_width1-1 downto 0); 
     inst_B : in std_logic_vector(inst_width2-1 downto 0); 

: out std_logic_vector(inst_width1 + 

  b_signed <= SIGNED(inst_B(inst_wid
        sum_signed <= a_signed + b_signed; 
 SUM <= std_logic_vector(sum_signed); 
end oper; 
 
subtract.vhd 
library IEEE; 
e IEEE.std_logic_1164.all; us

us
 
entity subtract i
      generic ( 

t_width : INTEGER := 32             ins
            ); 
      port ( 
            inst_A : in std_logic_vector(inst_width-1 downto 0); 

B : in std_logic_vector(inst_width-1 downto 0);             inst_
          DIFF :  

           
          );   

  
 
architecture oper of subtract is 

d, b_signed, diff_signed: S signal a_signe
 
begin 
  a_signed <= SIGNED(inst_A(inst_width-1) & inst_A); 

= SIGNED(inst_B(inst_width-1) & inst_B);   b_signed <
gn        diff_si

DIFF <= st 
en
 
multiplier.vhd 
library IEEE; 

.std 11use IEEE _logic_
use ieee.std_logic_arith.all; 
 
entity multiplier is 
      generic ( 

_width1 : INTEGER := 16;             inst
t_            ins

          );   
  
       
       

            PRODUCT_inst 
inst_width2 - 1 downto 0) 
           
            ); 

95 



    end multiplier; 
 
architecture oper of multiplier is 

IGNED(inst_width1+inst_width2-1 downto 0) ;  

CT_inst <= std_logic_vector(mult_sig); 
d oper; 

_logic_arith.ALL; 

std_logic_vector(255 

(2**I > A) then return(I-1); 

 signal mult_sig : S
 
begin 
 mult_sig <= SIGNED(inst_A) * SIGNED(inst_B);  
        PRODU
en
 
fft_pkg.vhd 
library IEEE; 
USE ieee.std_logic_1164.ALL; 
E ieee.stdUS

 
package fft_pkg is 
 type ioarray is array (integer range <>) of 
downto 0); 
 function log2(A: integer) return integer; 
d; en

 
package body fft_pkg is 
   function log2(A: integer) return integer is 
   begin 
   for I in 1 to 30 loop  -- Works for up to 32 bit integers   

        if
        end if; 
     end loop; 
    return(30); 
 end;   

end; 
 

96 



Appendix C: MATLAB Code 

twiddlegen_rc.m 
function twiddlegen_rc(N,tbits) 
%   twiddlegen_rc(N,tbits) 

s function generates all the roms needed for an 
 of N points.  Twiddle factors are tbits wide. 

in.m 

  rp= number of points in this rom 

e used to store the 
tors. 
resulting file is named rom<rnum>.vhdl, where <rnum> is the 
ed in rp. 
mple: romgen(16,64,10,1) would create a file called 

 
 

g file %s\n',fname); 

 
ntains %d points of %d width \n',rp,tbits); 
for a %d point fft.\n\n',fp); 

%       Thi
%       FFT
% 
%       This program uses: 
%       romgen_rc.m 
          |-frac2bin.m % 

%           |-writeb
% 
 
numpoints=N; 
rnum=1; 
while numpoints>4 
    romgen_rc(numpoints,N,tbits,rnum); 
    rnum=rnum+1; 

ts=numpoints/4;     numpoin
end 
 

mgen_rc.m ro
function romgen_rc(rp,fp,tbits,rnum) 
%   romgen_rc(rp,fp,tbits) 
%     
%       fp= total number of points in the FFT. 
%       tbits=width of the twiddle factor 
%       rnum=rom number 
%        
%   This function creates the vhdl ROM fil    
twiddle fac
%       The 
value specifi
%       For exa
rom1.vhdl 
% 
      This program uses: % 

%           frac2bin.m
ebin.m%           writ

 
%opening file for writing 

rom%d.vhd',rnum); fname=sprintf('
tinfprintf('crea

fid=fopen(fname,'w'); 
%writing beginning stuff to the file 
aw=log2(rp); 
fprintf(fid,'-- Rom file for twiddle factors \n'); 

,'-- %s',fname);fprintf(fid
fprintf(fid,' co
fprintf(fid,'-- 

97 



fprintf(fid,'LIBRARY ieee;\nUSE ieee.std_logic_1164.ALL;\nUSE 

  GENERIC(\n',rnum); 

f(fid,'        address_width : integer :=%d\n',aw); 
(fid,'    );\n    PORT(\n'); 

rint  downto 0);\n',aw-

,'        datar : OUT std_logic_vector (data_width-1 DOWNTO 
;\n'); 

d,'        datai : OUT std_logic_vector (data_width-1 DOWNTO 
 

m); 

ior OF rom%d IS\n\n BEGIN\n\n',rnum); 
(address)\nbegin\n    case address is\n'); 

   fprintf('%d %d %d %d %d',n,m,ma(m),rp,fp); 
j*n*ma(m)/fp); 

  

addr c=de
i   when "%s" => datar <= "',addrvec); 
fid,bitvecr); 
id,'";datai <= "'); 

ebin(fid,bitveci); 
  fprintf(fid,'"; --%d\n',n*ma(m)); 

      address=address+1; 
    end 
end 
%filling out the remaining zeros 
bitvecr=frac2bin((2^(tbits-1)-1),tbits,0); 
bitveci=frac2bin(0,tbits,0); 
for n=0:(rp/4-1) 
    addrvec=dec2bin(address,aw); 
    fprintf(fid,'        when "%s" => datar <= "',addrvec); 
    writebin(fid,bitvecr); 
    fprintf(fid,'";datai <= "'); 
    writebin(fid,bitveci); 
    fprintf(fid,'"; --0\n'); 
    address=address+1; 
end 
 
fprintf(fid,'        when others => for i in data_width-1 downto 0 
loop\n'); 
fprintf(fid,'            datar(i)<=''0'';datai(i)<=''0'';end loop;\n'); 
fprintf(fid,'    end case;\n\n'); 
fprintf(fid,'end process;\nEND behavior;\n'); 
fclose(fid); 

ieee.std_logic_arith.ALL;\n'); 
fprintf(fid,'\n\nENTITY rom%d IS\n  
fprintf(fid,'        data_width : integer :=%d;\n',tbits); 
fprint
fprintf
fp f(fid,'        address :in std_logic_vector (%d
1); 
fprintf(fid
0)
fprintf(fi
0)\n    );\n');
fprintf(fid,'end rom%d;\n',rnu
%begin writing architecture 
rintf(fid,'ARCHITECTURE behavfp

fprintf(fid,'process
ma=fp/rp*[2 1 3]; 
address=0; 
for m=1:3 

r n=0:((rp/4)-1)     fo
    % 

        expval=exp(-2*pi*
        rscld=round(real(expval)*(2^(tbits-1)-1)); 

d=round(imag(expval)*(2^(tbits-1)-1));       iscl
        bitvecr=frac2bin(rscld,tbits,0); 
        bitveci=frac2bin(iscld,tbits,0); 

dress,aw);         ve c2bin(ad
 d,'             fprintf(f

        writebin(
   intf(f     fpr

  writ      
      

  

98 



frac2bin.m 
function [output]=fra

number to be converted 
ts, must be an integer >0 
ional bits, must be an integer>=0 

ber in twos 

idiot proof, and will cause problems if the 

mber of bits specified-1. 

 bitsign=1; 

(ibits+fbits)=0; 
; 

out(k)=1; 

 

1)) 

c2bin(a,ibits,fbits); 
%  [output]=frac2bin(a,ibits, fbits); 
%           a=
%           ibits=integer part bi

 fract%           fbits=number of
%       This returns an array [output] that is the input num
complement form 
      [output] is ibits+fbits long % 

%    **NOTE**   This is not 
number is too big  
%               for the nu
 
 (a>=0) if
   

    number=a; 
else 
    bitsign=-1; 
    number=(a*-1); 
end 
ipart=number-rem(number,1); 

t=rem(number,1); fpar
outun

signedzero=1
 
if ibits~=1 
    for k=(ibits-1):-1:1, 
        if ipart>=2^(k-1) 
            unout(k+fbits)=1; 
            ipart=ipart-2^(k-1); 

             signedzero=0;
d         en

    end 
end 
 
for k=fbits:-1:1, 
    fpart=fpart*2; 
    if fpart>=1 

     un   
        fpart=fpart-1; 
        signedzero=0; 
    end 
d en

 
if (bitsign==-1) & (signedzero==0)
    testbit=1; 

s-1),     for k=1:(ibits+fbit
        if ((testbit==1) & (unout(k)==

stbit=0;             te
        elseif ((testbit==0) & (unout(k)==0)) 
            unout(k)=1; 
        elseif ((testbit==0) & (unout(k)==1)) 
            unout(k)=0; 

99 



        end 
    end 
    unout(ibits+fbits)=1; 
end 
output=unout; 
 

bin2frac.m 
function [output]=bin2frac(a,ibits,fbits); 
%  [output]=frac2bin(a,ibits, fbits); 
%           a=array to be converted to real numbers 
%           ibits=integer part bits

fractio
, must be an integer >0 
nal bits, must be an integer>=0 

e 

n bits specified.  It also assumes 2's complement 

)==0)) 

) 

; 
ritebin(fid,a) 

%           fbits=number of 
%       This returns a real number in [output] 

s if th%    **NOTE**   This is not idiot proof, and will cause problem
number is bigger  

     tha%          
form 
 
%code to convert back from signed to sign/magnitude 
unin=a; 
bitsign=1; 
if unin(ibits+fbits)==1 
    bitsign=-1; 
    testbit=1; 
    for k=1:(ibits+fbits), 
        if ((testbit==1) & (unin(k)==1)) 
            testbit=0; 
        elseif ((testbit==0) & (unin(k
            unin(k)=1; 
        elseif ((testbit==0) & (unin(k)==1)
            unin(k)=0; 

end         
end     

end 
temp=0; 
bitvalue=pow2(ibits-2); 

s-1):-1:1, for k=(ibits+fbit
    temp=temp+unin(k)*bitvalue; 
    bitvalue=bitvalue/2; 
end 
output=temp*bitsign; 
 

writebin.m 
func
  w
tion writebin(fid,a)

% 
%       fid - file id obtained from fopen 
%       a - array to be written to to the file 
%       No return arguements 
for k=(size(a,2)):-1:1 
    fprintf(fid,'%1.1d',a(k)); 
end 

100 



testveccon.m 

ated single line input for the 

ector file name 

  Vectors will be some initial set up, then a sinc wave input, 
d by two square wave inputs.  This file does not generate 

ulated results, only the input waves. 
put waves are 1 bit of integer, bw-1 bits of fraction 

   frac2bin.m 

5; 
atara=1:N; 

; 

e wave input 

rb(k)=1; 

ara*12/64)+cos(2*pi*datara*2/64))/2; 

/(2^bw); 
b=datarb*(2^bw-1)/(2^bw); 

n=fopen(vecfile,'w'); 

)); 

 

function testveccon(N,bw,vecfile) 
%testveccon(N,bw,vecfile) 
%   This function generates a concaten
FFT. 
%   It creates a single line input of the following format 
%   resetn  load_enable  xin_r  xin_i 
%   
%   N is the number of points in the fft 
%   bw is the bit width of the input 
%   vecfile is the v
% 
% 
%   followe
the  
%   MATLAB calc
%   In
% 
%   This file uses: 
%    
%       writebin.m 
%   
 
 dutycycle=0.12
 d
 datarb=1:N; 
datara=sinc((datara-N/2)/2)
for k=1:N 
    if k>(N*dutycycle)   %squar
         datarb(k)=0; 
    else 
         data
    end 
end; 
 
%dataia=datarb; 
%dataib=datara; 
%  
%datara=(sin(2*pi*dat
dataia=0; 
dataib=0; 

tara*(2^bw-1)datara=da
datar
fi
writebin(fin,frac2bin(0,1,bw*2+1)); 
fprintf(fin,'\n1'); 
writebin(fin,frac2bin(0,1,bw*2
for k=1:N 
    fprintf(fin,'\n11');
    writebin(fin,frac2bin(datara(k),1,bw-1)); 

(dataia(1),1,bw-1));     writebin(fin,frac2bin
%    fprintf(fin,'\n'); 
end 

101 



 
for k=1:N 
    fprintf(fin,'\n11'); 

ritebin(fin,frac2bin(    w datarb(k),1,bw-1)); 
n,frac2bin(dataib(1),1,bw-1)); 

    fprintf(fin,'\n'); 

a= string of 1's and 0's to be converted to real numbers 
 part bits, must be an integer >0 
of fractional bits, must be an integer>=0 

rns a real number in [output] 
idiot proof, and will cause problems if the 

lso assumes 2's complement 

itude 

1; 
it=1; 
=(ibits+fbits):-1:1, 

& (a(k)=='1')) 

(k)=='0')) 

it==0) & (a(k)=='0')) 
 

       elseif ((testbit==0) & (a(k)=='1')) 
  unin(k)=0; 
d 

       unin(k)=0; 

    writebin(fi
%
end 
 
for k=1:N 
    fprintf(fin,'\n11'); 
    writebin(fin,frac2bin(datarb(k),1,bw-1)); 
    writebin(fin,frac2bin(dataib(1),1,bw-1)); 
%   fprintf(fin,'\n'); 
end 
 
fclose('all'); 
 
str2frac.m 
function [output]=str2frac(a,ibits,fbits); 

ut]=str2frac(a,ibits, fbits); %  [outp
%           
%           ibits=integer

s=number %           fbit
tu%       This re

%    **NOTE**   This is not 
number is bigger  

ts specified.  It a%               than bi
form 
 
%code to convert back from signed to sign/magn
bitsign=1; 

 if a(1)=='1'
ign=-    bits

testb    
    for k
        if ((testbit==1) 
            testbit=0; 
            unin(k)=1; 

=1) & (a        elseif ((testbit=
        unin(k)=0;     

        elseif ((testb
           unin(k)=1; 
 
          
        en
    end 
else 
    for k=1:(ibits+fbits), 
        if a(k)=='1' 
            unin(k)=1; 
        end 
        if a(k)=='0' 
     

102 



        end 

iled_tb  

its in the input. 
l bits in the input. 
er growth. 
ltiplier growth. 

 is the number of points in the FFT. 

es: 
ac.m 

log2(N)-1)/2); 

n+(floor((log2(N)-1)/2)*(mult_g-1)); 
ut+fbout; 

s',[dp2,inf]))'; 

rst outputs 

(A(k,1:dp),ibout,fbout); 
dp+1:dp2),ibout,fbout); 

ecombining outputs 

(m); 

    end 
end 
temp=0; 
bitvalue=pow2(0-fbits); 
for k=(ibits+fbits):-1:1, 
    temp=temp+unin(k)*bitvalue; 

bitvalue=bitvalue*2;     
end 
output=temp*bitsign; 
 

tdata.m plo
function plotdata(infile,outfile,ibin,fbin,add_g,mult_g,N) 
%  plotdata(infile,outfile,ibin,fbin,add_g,mult_g,N) 
%   Reads in from infile (test vectors sent into fft_f
%   and outfile (output of fft_filed_tb, usually data.out) 
% 
%   ibin is integer b

na%   fbin is fractio
%   add_g is the add

mult_g is the mu%   
  N% 

% 
ram us%   This prog

%       str2fr
% 
clf 
fout=fopen(outfile); 

N); ibout=ibin+add_g*log2(
>0 if mult_g

    ibout=ibout+floor((
end; 

=fbifbout
=ibodp

dp2=2*dp; 
A=(fscanf(fout,'%

,nc]=size(A); [nr
hold on; 

; offset=N+2
%getting fi
if (N+offset)<=nr 
    for k=offset+1:offset+N 

str2frac        out1r(k-offset)=
        out1i(k-offset)=str2frac(A(k,
    end 
 out1r=out1r'; 

i=out1i';  out1
 %Bit reversing and r
 for k=0:(N-1) 
        bitorder=dec2bin(k,log2(N)); 

torder,2)/2)         for m=1:(size(bi
        temp=bitorder    

103 



            bitorder(m)=bitorder(size(bitorder,2)+1-m); 
(bitorder,2)+1-m)=temp; 

+1); 

ubplot(2,2,1),plot(fftshift(abs(adata)),'k'),axis tight, 
'Magnitude of FFT of Sinc Wave Input'),hold on; 
(2,2,2),plot(fftshift(angle(adata)),'k'),axis tight, 

 Sinc Wave Input'),hold on; 

+offset)<=nr 
  for k=offset+1:offset+N 

offset)=str2frac(A(k,1:dp),ibout,fbout); 
      out1i(k-offset)=str2frac(A(k,dp+1:dp2),ibout,fbout); 

  bitrevpos=bin2dec(bitorder); 

2,2,3),plot(fftshift(real(bdata)),'k'),axis tight, 
art of FFT of Square wave input'),hold on; 
,4),plot(fftshift(imag(bdata)),'k'),axis tight, 

T of Square wave input'),hold on; 

ing them on same plots 

 

t+N 
)=str2frac(A(k,3:dp),ibin,fbin) + 

2),ibin,fbin); 

); 

            bitorder(size
        end 
        bitrevpos=bin2dec(bitorder); 
        adata(bitrevpos+1)=out1r(k+1)+i*out1i(k
    end 
    s
    title(
    subplot
    title('Angle of FFT of
end 
%getting second outputs 
offset=offset+N; 
if (N
  
        out1r(k-
  
    end 
    out1r=out1r'; 
 out1i=out1i'; 
 %Bit reversing and recombining outputs 
 for k=0:(N-1) 
        bitorder=dec2bin(k,log2(N)); 
        for m=1:(size(bitorder,2)/2) 
            temp=bitorder(m); 
            bitorder(m)=bitorder(size(bitorder,2)+1-m); 
            bitorder(size(bitorder,2)+1-m)=temp; 
        end 
      

        bdata(bitrevpos+1)=out1r(k+1)+i*out1i(k+1); 
 end 
 subplot(
    title('Real p

,2 subplot(2
    title('Imaginary part of FF
end 
 
 
%getting input waves from testvec and outputt
fin=fopen(infile); 
dp=ibin+fbin; 
dp2=2*dp+2; 
dp=dp+2; 

,inf]))'; A=(fscanf(fin,'%s',[dp2
(A); [nr,nc]=size

 
t=2;offse

%getting first inputs 
if (N+offset)<=nr 
    for k=offset+1:offse

ata(k-offset        outd
i*str2frac(A(k,dp+1:dp
    end 
    afftdata=fft(outdata

104 



    subplot(2,2,1),plot(fftshift(abs(afftdata))); 
ot(2,2,2),plot(fftshift(angle(afftdata))); 

N 
   outdata(k-offset)=str2frac(A(k,3:dp),ibin,fbin) + 

2),ibin,fbin); 
   end 

ta=fft(outdata); 
t(2,2,3),plot(fftshift(real(bfftdata))); 

    subpl
end 
 
%getting second inputs 
offset=offset+N; 
if (N+offset)<=nr 
    for k=offset+1:offset+
     
i*str2frac(A(k,dp+1:dp
 
    bfftda
    subplo
    subplot(2,2,4),plot(fftshift(imag(bfftdata))); 
end 
 
 
lose('all'); fc

 
 

105 



Vita 

Adam R. Miller was born in Hinsdale, Illinois, on March 24th 1978.  He moved several 

 high 

f the 

 that he met his wife, Lara Stembridge of 

ber of 2000 they were married in Memphis. 

 the Bachelor of Science degree in Electrical Engineering.  

ate Teaching 

y of 

 Graduate Research Assistant under Dr. Donald Bouldin.  He 

egree in Electrical Engineering and 

times to places in Indiana, Kansas, Texas, and finally to Crystal Lake, Illinois.  There he attended 

g fromCrystal Lake South High School, and finished in May of 1996.  After graduatin

school, his family moved to Tennessee, and he began attending the Knoxville campus o

University of Tennessee.  It was at the university

n DecemMemphis, Tennessee.  I

In May of 2000, he completed

He immediately entered the graduate program at UT, and began working as a Gradu

e assisted professors in assembly language and digital design classes until MaAssistant.  H

2002, when he began working as a

ha pleted all the requirements for the Master of Science ds com

will be awarded that degree in August of 2003. 

106 


	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	Chapter 1: Introduction
	Chapter 2: Background
	2.1 VHDL and Design Flow
	2.2 Design-for-Reuse
	2.3 DSP
	2.3.1 Overview
	2.3.2 The Fast Fourier Transform
	2.3.3 Rounding

	2.4 Verification
	2.4.1 Overview
	2.4.2 Simulation Types
	2.4.3 Testing


	Chapter 3: Implementation
	Rounders
	3.1.1 Fixed Rounder
	3.1.2 Configurable Rounder
	3.1.3 Output Gain Stage

	3.2 FFT
	3.2.1 Shift Registers, Adders, and Subtract Modules
	3.2.2 Butterfly Types
	Complex Multiplier
	Twiddle Factors
	Control Logic
	Structure
	Test Bench


	Chapter 4: Results
	Rounders
	Fixed Rounder
	Configurable Rounder
	Output Gain Stage

	4.2 FFT Results
	4.2.1 MATLAB
	4.2.2 Pre-synthesis and Pre-layout
	4.2.3 Layout and Post-layout
	4.2.4 Hardware Testing
	4.2.5 FFT Flexibility


	Chapter 5: Conclusions and Future Work
	List of References
	Appendices
	Appendix A: Rounder Code
	Appendix B: FFT Code
	Appendix C: MATLAB Code
	Vita

